[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
this is a test
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
Subscription::
Contact us::
Site Facilities::
Webmail::
Ethical Consideration::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 16, Issue 4 (Winter 2022) ::
Iranian J Nutr Sci Food Technol 2022, 16(4): 97-110 Back to browse issues page
Production, Purification and Physicochemical Characterization of Exopolysaccharides Produced by Lactobacillus pentosus
Y Sarhadi , M Tavakoli * , MA Najafi , S Soleimanifard , S Niknia
Faculty of Agriculture, University of Zabol, Zabol, Iran , mtavakoli@uoz.ac.ir
Abstract:   (1854 Views)
Background and Objectives: Exopolysaccharides are linked to all form of polysaccharides found outside of the microbial cell wall. The aim of the current study was to investigate physicochemical characteristics of an exopolysaccharide produced by Lactobacillus pentosus.
 Materials & Methods: First, the exopolysaccharide was isolated under optimal conditions (glucose, 4.11% w/v; sucrose, 3.47% w/v; yeast extract, 3% w/v; peptone, 3% w/v; time, 30.92 h, temperature, 40 °C; inoculation size, 3.16% v/v; pH 7). Then, exopolysaccharide was purified and dried using freeze dryer. Physicochemical characteristics of the exopolysaccharide produced by Lactobacillus pentosus were assessed. Assessments included NMR test, water holding capacity, aqueous solubility index, antibiofilm activity, rheological test and inhibition of DPPH radical activity.
Results: Total quantities of the exopolysaccharide and biomass produced by Lactobacillus pentose included 0.225 and 0.405 mg/ml, respectively. Results of the NMR of exopolysaccharide generally showed presence of anomeric protons, cyclic protons and alkyls. Water solubility index and water holding capacity of the exopolysaccharide included 27.14 and 170%, respectively. The highest antibiofilm effects of the exopolysaccharide were demonstrated against Pseudomonas aeruginosa. The exopolysaccharide frequency-change rheological test showed typical pseudo-plastic non-Newtonian fluid behaviors. The DPPH radical scavenging activity demonstrated moderate antioxidant characteristics of the exopolysaccharide.
Conclusion: Results suggest that exopolysaccharide from Lactobacillus pentosus includes potentials to be used as a natural agent in foods.
Keywords: Exopolysaccharide, Antioxidant activity, Nuclear magnetic resonance, Rheology
Full-Text [PDF 869 kb]   (647 Downloads)    
Article type: Research | Subject: Food Science
Received: 2021/05/22 | Accepted: 2021/11/10 | Published: 2022/01/2
References
1. Özogul F, Hamed I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Critical reviews in food science and nutrition. 2018 Jul 3;58(10):1660-70. [DOI:10.1080/10408398.2016.1277972]
2. Ikeda S, Kondoh D, Aryantini NP, Urashima T, Fukuda K. Purification, rheological characterization, and visualization of viscous, neutral, hetero-exopolysaccharide produced by lactic acid bacteria. InLactic Acid Bacteria 2019 (pp. 55-65). Humana Press, New York, NY. [DOI:10.1007/978-1-4939-8907-2_6]
3. Hussain A, Zia KM, Tabasum S, Noreen A, Ali M, Iqbal R, Zuber M. Blends and composites of exopolysaccharides; properties and applications: A review. International journal of biological macromolecules. 2017 Jan 1;94:10-27. [DOI:10.1016/j.ijbiomac.2016.09.104]
4. Maalej H, Boisset C, Hmidet N, Colin-Morel P, Buon L, Nasri M. Depolymerization of Pseudomonas stutzeri exopolysaccharide upon fermentation as a promising production process of antibacterial compounds. Food chemistry. 2017 Jul 15;227:22-32. [DOI:10.1016/j.foodchem.2017.01.079]
5. Reshetnikov SV, Tan KK. Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. International Journal of Medicinal Mushrooms. 2001;3(4). [DOI:10.1615/IntJMedMushr.v3.i4.80]
6. Karimi L, Taran M, Mehdi Z. Exopolysaccharide Production by Bacillus Pasteuri and the Study of its Antibacterial and Antioxidant Properties. New Cellular and Molecular Biotechnology Journal.2018 Jul 10;8(31):20-8. [In persian]
7. Mobini S, Tajabadi Ebrahim M, Hashemi M, Jafari P. Isolation of Exopolysaccharides (the cell-bound EPS and the released EPS) Produced by Bacillus spp. Isolated from Arak Agricultures. New Cellular and Molecular Biotechnology Journal. 2012 Sep 10;2(7):75-82.
8. Górska S, Hermanova P, Ciekot J, Schwarzer M, Srutkova D, Brzozowska E, Kozakova H, Gamian A. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology. 2016 Sep 1;26(9):1014-24. [DOI:10.1093/glycob/cww047]
9. Jiang Y, Yang Z. A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. Journal of Functional Foods. 2018 Aug 1;47:229-40. [DOI:10.1016/j.jff.2018.05.060]
10. Zaporozhets T, Besednova N. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system. Pharmaceutical biology. 2016 Dec.1;54(12):3126-35. [DOI:10.1080/13880209.2016.1185444]
11. Sönmez Ş, Önal Darilmaz D, Beyatli Y. Determination of the relationship between oxalate degradation and exopolysaccharide production by different Lactobacillus probiotic strains. International Journal of Dairy Technology. 2018 Aug;71(3):741-52. [DOI:10.1111/1471-0307.12513]
12. Bomfim VB, Neto JH, Leite KS, de Andrade Vieira É, Iacomini M, Silva CM, dos Santos KM, Cardarelli HR. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT. 2020 Jun 1;127:109349. [DOI:10.1016/j.lwt.2020.109349]
13. Trabelsi I, Ktari N, Slima SB, Triki M, Bardaa S, Mnif H, Salah RB. Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International journal of biological macromolecules. 2017 Oct1;103:194-201. [DOI:10.1016/j.ijbiomac.2017.05.017]
14. Raisi F, Tavakoli M, Haghayegh GH, Keikhasaber M, Ahmadi M. Production, purification, physicochemical properties and optimization of Exopolysaccharide production of Iranian local lactobacillus. Zabol: University of Zabol, M.C. Faculty of Nutrition Sciences and Food Technology;2019 [in Persian]
15. Tavakoli M, Hamidi-Esfahani Z, Hejazi MA, Azizi MH, Abbasi S. Characterization of probiotic abilities of Lactobacilli isolated from Iranian Koozeh traditional cheese. Polish Journal of Food and Nutrition Sciences. 2017;67(1). [DOI:10.1515/pjfns-2016-0003]
16. Nambiar RB, Sellamuthu PS, Perumal AB, Sadiku ER, Phiri G, Jayaramudu J. Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from human breast milk. Process Biochemistry. 2018 Oct 1;73:15-22. [DOI:10.1016/j.procbio.2018.07.018]
17. Sasikumar K, Vaikkath DK, Devendra L, Nampoothiri KM. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresource technology. 2017 Oct 1;241:1152-6. [DOI:10.1016/j.biortech.2017.05.075]
18. Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir-Part II. Food Hydrocolloids. 2013 Jan 1;30(1):343-50. [DOI:10.1016/j.foodhyd.2012.06.009]
19. Saravanan C, Shetty PK. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. International journal of biological macromolecules.2016 Sep 1;90:100-6. [DOI:10.1016/j.ijbiomac.2015.02.007]
20. Liu Q, Cao X, Zhuang X, Han W, Guo W, Xiong J, Zhang X. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation: Antioxidant activities and effects on the production of NO. Food chemistry. 2017 May 15;223:49-53. [DOI:10.1016/j.foodchem.2016.12.018]
21. Rütering M, Schmid J, Gansbiller M, Braun A, Kleinen J, Schilling M, Sieber V. Rheological characterization of the exopolysaccharide Paenan in surfactant systems. Carbohydrate polymers.2018 Feb 1;181:719-26. [DOI:10.1016/j.carbpol.2017.11.086]
22. Zhang Z, Liu Z, Tao X, Wei H. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate polymers.2016 Nov 20;153:25-33. [DOI:10.1016/j.carbpol.2016.07.084]
23. Amiri S, Mokarram RR, Khiabani MS, Bari MR, Khaledabad MA. Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: optimization of fermentation variables and characterization of structure and bioactivities. International journal of biological macromolecules. 2019 Feb 15;123:752-65. [In persian] [DOI:10.1016/j.ijbiomac.2018.11.084]
24. Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT-Food Science and Technology. 2015 Dec.1;64(2):1179-86. [DOI:10.1016/j.lwt.2015.07.040]
25. Xu Y, Coda R, Holopainen-Mantila U, Laitila A, Katina K, Tenkanen M. Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International. 2019 Jan 1;115:191-9. [DOI:10.1016/j.foodres.2018.08.054]
26. Navarini L, Abatangelo A, Bertocchi C, Conti E, Bosco M, Picotti F. Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. International Journal of Biological Macromolecules. 2001 Mar 13;28(3):219-26 [DOI:10.1016/S0141-8130(01)00118-0]
27. Mohan Rao TJ, Goyal A. Purification, optimization of assay, and stability studies of dextransucrase isolated from Weissella cibaria JAG8. Preparative Biochemistry and Biotechnology. 2013 Mar 11;43(4):329-41. [DOI:10.1080/10826068.2012.737400]
28. Martin-Pastor M, Ferreira AS, Moppert X, Nunes C, Coimbra MA, Reis RL, Guezennec J, Novoa-Carballal R. Structure, rheology, and copper-complexation of a hyaluronan-like exopolysaccharide from Vibrio. Carbohydrate polymers. 2019 Oct 15; 222:114999. [DOI:10.1016/j.carbpol.2019.114999]
29. Xu Y, Cui Y, Wang X, Yue F, Shan Y, Liu B, Zhou Y, Yi Y, Lü X. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. International journal of biological macromolecules. 2019 May 1; 128:480-92. [DOI:10.1016/j.ijbiomac.2019.01.117]
30. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food chemistry. 2011 Jan 15;124(2):411-21. [DOI:10.1016/j.foodchem.2010.06.077]
31. Insulkar P, Kerkar S, Lele SS. Purification and structural-functional characterization of an exopolysaccharide from Bacillus licheniformis PASS26 with in-vitro antitumor and wound healing activities. International journal of biological macromolecules. 2018 Dec 1;120:1441-50. [DOI:10.1016/j.ijbiomac.2018.09.147]
32. Sharma K, Sharma N, Handa S, Pathania S. Purification and characterization of novel exopolysaccharides produced from Lactobacillus paraplantarum KM1 isolated from human milk and its cytotoxicity. Journal of Genetic Engineering and Biotechnology. 2020 Dec;18(1):1-0. [DOI:10.1186/s43141-020-00063-5]
33. Gomaa M, Yousef N. Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus salarius BM02: study of its potential antioxidant, emulsifying properties and application in the mixotrophic cultivation of Spirulina platensis. International journal of biological macromolecules. 2020 Apr 15;149:552-61. [DOI:10.1016/j.ijbiomac.2020.01.289]
34. Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Science. 2014 Dec 1;97(12):7334-43. [DOI:10.3168/jds.2014-7912]
35. Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International journal of biological macromolecules. 2015 Mar 1;74:119-26. [DOI:10.1016/j.ijbiomac.2014.12.006]
36. Saif FA, Sakr EA. Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. Bioactive Carbohydrates and Dietary Fibre. 2020 Oct 1;24:100231. [DOI:10.1016/j.bcdf.2020.100231]
37. Xu Z, Guo Q, Zhang H, Wu Y, Hang X, Ai L. Exopolysaccharide produced by Streptococcus thermophiles S-3: molecular, partial structural and rheological properties. Carbohydrate polymers.2018 Aug 15;194:132-8. [DOI:10.1016/j.carbpol.2018.04.014]
38. Ayyash M, Abu-Jdayil B, Itsaranuwat P, Galiwango E, Tamiello-Rosa C, Abdullah H, Esposito G, Hunashal Y, Obaid RS, Hamed F. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. International journal of biological macromolecules. 2020 Feb 1;144:938-46. [DOI:10.1016/j.ijbiomac.2019.09.171]
39. Abedfar A, Hosseininezhad M, Rafe A. Effect of microbial exopolysaccharide on wheat bran sourdough: Rheological, thermal and microstructural characteristics. International journal of biological macromolecules. 2020 Jul 1;154:371-9. [DOI:10.1016/j.ijbiomac.2020.03.149]
40. Alves VD, Freitas F, Torres CA, Cruz M, Marques R, Grandfils C, Gonçalves MP, Oliveira R, Reis MA. Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp. Carbohydrate Polymers. 2009 Sep 15. [DOI:10.1016/j.carbpol.2009.09.006]
41. Lu C, Li C, Chen B, Shen Y. Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of Amygdalus pedunculata Pall. Food chemistry. 2018 Nov 1;265:111-9 [DOI:10.1016/j.foodchem.2018.05.091]
42. Mahdhi A, Leban N, Chakroun I, Chaouch MA, Hafsa J, Fdhila K, et al. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microbial pathogenesis. 2017 Aug 1;109:214-20. [DOI:10.1016/j.micpath.2017.05.046]
43. Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Jiang C, Huang Q, Yang H, Shi J, Hussain N. Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. Lwt. 2018 Mar 1;89:638-47. [DOI:10.1016/j.lwt.2017.11.034]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarhadi Y, Tavakoli M, Najafi M, Soleimanifard S, Niknia S. Production, Purification and Physicochemical Characterization of Exopolysaccharides Produced by Lactobacillus pentosus. Iranian J Nutr Sci Food Technol 2022; 16 (4) :97-110
URL: http://nsft.sbmu.ac.ir/article-1-3292-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 4 (Winter 2022) Back to browse issues page
Iranian Journal of  Nutrition Sciences and Food  Technology
Persian site map - English site map - Created in 0.06 seconds with 36 queries by YEKTAWEB 4645