[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 14, Issue 4 (Winter 2020) ::
2020, 14(4): 89-102 Back to browse issues page
Processing Time Effects on Functional and Antioxidant Properties of the Quinoa Proteins Hydrolyzed with Alcalase and Pancreatin
Y Sadeghian Amin , AR Sadeghi Mahoonak , M Ghorbani, M Alami, HR Joshaghani
Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources
Abstract:   (385 Views)
Background and Objectives: Antioxidants are used to decrease oxidation of oils and increase shelf life of foods for centuries. Nowadays, researchers investigate for the replacement of synthetic antioxidants with antioxidants from natural sources. The purpose of this study was to investigate effects of quinoa enzyme-hydrolyzed proteins on functional and antioxidant properties of the produced peptides.
 Materials & Methods: In this study, proteins of the quinoa seeds were extracted and hydrolyzed with alcalase and pancreatin enzymes. The hydrolyzed proteins were assessed for the degrees of hydrolysis, solubility, emulsifying capacity, foaming capacity and antioxidant properties. Furthermore, DPPH free radical scavenging activity, hydroxyl radical scavenging activity, reducing power, ABTS radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC) and iron and copper ion chelating activity were used to assess the antioxidant properties.
Results: Results showed that the enzymatic hydrolysis significantly increased solubility, foaming capacity and emulsifying capacity, especially at isoelectric point and acidic pH. Free radical scavenging of DPPH (from 16.85 to 56.04%), hydroxyl radical scavenging (from 26.31 to 63.91%), reducing power (from 0.44 to 0.95 absorbance at 765 nm), ABTS radical scavenging (from 30.01 to 68.42%), Trolox equivalent antioxidant capacity (from 0.73 to 1.83 mM), iron ion chelating activity (from 36.91 to 70.64%), and copper ion chelating activity (from 3.76 to 10.76%) increased to the highest levels after enzyme hydrolysis.
Conclusion: Results of this study have shown that enzymatic hydrolysis can improve functional properties of the quinoa seed proteins. Antioxidant capacity of the hydrolyzed proteins is significantly higher than non-hydrolyzed proteins. Improvement of the functional properties and antioxidant capacity of the hydrolyzed proteins depend on hydrolysis time and enzyme type.
Keywords: Alcalase, Pancreatin, Quinoa, Functional properties, Enzymatic hydrolysis
Full-Text [PDF 749 kb]   (252 Downloads)    
Type of Study: Research | Subject: Food Science
Received: 2018/12/6 | Accepted: 2019/04/7 | Published: 2020/01/11
References
1. Halliwell B. Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res. 2000;47(3):410-8. [DOI:10.1016/S0008-6363(00)00097-3]
2. Collins AR. Antioxidant intervention as a route to cancer prevention. Eur J Cancer. 2005;41(13):1923-30. [DOI:10.1016/j.ejca.2005.06.004]
3. Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr. Oxford University Press; 2006;136(12):3022-6. [DOI:10.1093/jn/136.12.3022]
4. Meisel H, FitzGerald RJ. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des. c1995-; 2003;9(16):1289-96. [DOI:10.2174/1381612033454847]
5. Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem. 2008;111(2):370-6. [DOI:10.1016/j.foodchem.2008.03.078]
6. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides. 2010;31(10):1949-56. [DOI:10.1016/j.peptides.2010.06.020]
7. Moure A, Sineiro J, Domínguez H, Parajó JC. Functionality of oilseed protein products: a review. Food Res Int. 2006;39(9):945-63. [DOI:10.1016/j.foodres.2006.07.002]
8. Rajapakse N, Mendis E, Jung W-K, Je J-Y, Kim S-K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int. 2005;38(2):175-82. [DOI:10.1016/j.foodres.2004.10.002]
9. James LEA. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res. 2009;58:1-31. [DOI:10.1016/S1043-4526(09)58001-1]
10. Brinegar C, Goundan S. Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). J Agric Food Chem. 1993;41(2):182-5. [DOI:10.1021/jf00026a006]
11. Vega‐Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric. 2010;90(15):2541-7. [DOI:10.1002/jsfa.4158]
12. Bhargava A, Shukla S, Ohri D. Chenopodium quinoa-an Indian perspective. Ind Crops Prod. Elsevier; 2006;23(1):73-87. [DOI:10.1016/j.indcrop.2005.04.002]
13. Details S, Date M, Кант И, Williams P, Phillips G, Berg JL, et al. Zeta Potential Report. Measurement [Internet]. 2010;14(2):2-6. Available from: http://doi.wiley.com/10.1111/j.1365-2621.2002.tb11370.x
14. Aluko RE, Monu E. Functional and bioactive properties of quinoa seed protein hydrolysates. J Food Sci. 2003;68(4):1254-8. [DOI:10.1111/j.1365-2621.2003.tb09635.x]
15. Chen L, Chen J, Ren J, Zhao M. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocoll. 2011;25(5):887-97. [DOI:10.1016/j.foodhyd.2010.08.013]
16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248-54. [DOI:10.1016/0003-2697(76)90527-3]
17. Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010;121(1):178-84. [DOI:10.1016/j.foodchem.2009.12.027]
18. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007;102(4):1317-27. [DOI:10.1016/j.foodchem.2006.07.016]
19. Wu H-C, Chen H-M, Shiau C-Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int. 2003;36(9):949-57. [DOI:10.1016/S0963-9969(03)00104-2]
20. You L, Zhao M, Regenstein JM, Ren J. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chem. 2010;120(3):810-6. [DOI:10.1016/j.foodchem.2009.11.018]
21. Ahmadi F, Kadivar M, Shahedi M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem. 2007;105(1):57-64. [DOI:10.1016/j.foodchem.2007.03.056]
22. Kim JW, Minamikawa T. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem. 1997;61(1):118-23. [DOI:10.1271/bbb.61.118]
23. Kong B, Xiong YL. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J Agric Food Chem. 2006;54(16):6059-68. [DOI:10.1021/jf060632q]
24. You L, Zhao M, Cui C, Zhao H, Yang B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov food Sci Emerg Technol. 2009;10(2):235-40. [DOI:10.1016/j.ifset.2008.08.007]
25. Tsumura K, Saito T, Tsuge K, Ashida H, Kugimiya W, Inouye K. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Sci Technol. 2005;38(3):255-61. [DOI:10.1016/j.lwt.2004.06.007]
26. Elsohaimy S.A, Refaay T, Zaytoun M.A.M, physicochemical and functional properties of quinoa protein isolate. Annals of Agr. Sci. 2015;60(2):297-305. [DOI:10.1016/j.aoas.2015.10.007]
27. Jayasena V, Chih HJ, Nasar-Abbas S.M. Functional properties of sweet lupin protein isolated and tested at various pH levels. Research Journal of Agriculture and Biological Sciences 2010; 6 (2), 130-137.
28. Mahajan A, Dua S. Salts and pH induced changes in functional properties of Amaranth (Amaranthus tricolor L.) seed meal. Cereal Chemistry, 2002; 79 (6), 834-837. [DOI:10.1094/CCHEM.2002.79.6.834]
29. Ambigaipalan P, Al-Khalifa AS, Shahidi F. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. J Funct Foods. 2015;18:1125-37. [DOI:10.1016/j.jff.2015.01.021]
30. Chen H-M, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem. 1998;46(1):49-53. [DOI:10.1021/jf970649w]
31. Pihlanto A. Antioxidative peptides derived from milk proteins. Int Dairy J. 2006;16(11):1306-14. [DOI:10.1016/j.idairyj.2006.06.005]
32. Liu Q, Kong B, Xiong YL, Xia X. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 2010;118(2):403-10. [DOI:10.1016/j.foodchem.2009.05.013]
33. Luo Y, Pan K, Zhong Q. Physical, chemical and biochemical properties of casein hydrolyzed by three proteases: partial characterizations. Food Chem. 2014;155:146-54. [DOI:10.1016/j.foodchem.2014.01.048]
34. Zhu L, Chen J, Tang X, Xiong YL. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem. 2008;56(8):2714-21. [DOI:10.1021/jf703697e]
35. Li X, Deng J, Shen S, Li T, Yuan M, Yang R, et al. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake. J Food Sci Technol. 2015;52(9):5681-90. [DOI:10.1007/s13197-014-1693-z]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghian Amin Y, Sadeghi Mahoonak A, Ghorbani M, Alami M, Joshaghani H. Processing Time Effects on Functional and Antioxidant Properties of the Quinoa Proteins Hydrolyzed with Alcalase and Pancreatin. Iranian Journal of Nutrition Sciences & Food Technology. 2020; 14 (4) :89-102
URL: http://nsft.sbmu.ac.ir/article-1-2751-en.html


Volume 14, Issue 4 (Winter 2020) Back to browse issues page
Iranian Journal of  Nutrition Sciences & Food  Technology
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 4054