[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
this is a test
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
Subscription::
Contact us::
Site Facilities::
Webmail::
Ethical Consideration::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 15, Issue 1 (Spring 2020) ::
Iranian J Nutr Sci Food Technol 2020, 15(1): 35-48 Back to browse issues page
Processing Optimization of Production of Hydrolyzed Protein from Orange Seed Waste with Pepsin Enzyme
N Mazloomi * , AR Sadeghi Mahoonak , M Ghorbani , GR Houshmand , F Toldra
Gorgan University of Agricultural Sciences and Natural Resources, a.k.a. Gorgan , samira.mazloomi@yahoo.com
Abstract:   (3951 Views)
Background and Objectives: The results of observations and studies over the years have shown that health and nutrition are highly related with each other. Bioactive peptides are defined as hydrolyzed proteins, which have the ability to stimulate the desired activities. In this study, the effect of adding pepsin enzyme on orange seed protein was investigated to obtain the hydrolyzed protein, and the antioxidant properties of the hydrolyzed protein were evaluated.

 Materials & Methods: In the present study, the orange seed protein concentrate was extracted, and then hydrolyzed using different concentrations of pepsin enzyme (1- 3% W/W) and the hydrolysis time of (2-5 hours) at the temperature range of 45-55 °C. Optimal conditions for production of hydrolyzed proteins with the highest antioxidant properties (DPPH radical scavenging activity, radical OH scavenging activity, ferric reducing activity, and total antioxidant) were evaluated.

Results: Optimum treatment at determined conditions (temperature 33 °C, time 4 hr and enzyme to substrate ratio of 2.35 %w/w) with antioxidant properties (DPPH radical scavenging activity (59/63%), radical OH scavenging activity (48/12%), ferric reducing activity (57/83%) and total antioxidant (87/59%) was obtained, and antioxidant tests were performed on the optimal treatment for confirmation of the values proposed by software.

Conclusion: The results showed that the hydrolyzed protein derived from orange seed could be used in formulation of foods as a natural additive with the antioxidant ability. It can also be used as a nutraceutical.
Keywords: Orange seed, Antioxidant properties, Bioactive peptides, Pepsin enzyme, Optimization
Full-Text [PDF 1259 kb]   (2127 Downloads)    
Article type: Research | Subject: Food Science
Received: 2019/03/17 | Accepted: 2019/05/25 | Published: 2020/03/25
References
1. Danquah MK, Agyei D. Pharmaceutical applications of bioactive peptides. OA BioTech. 2012; 1:1-5. [DOI:10.13172/2052-0069-1-2-294]
2. Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. Int Dairy J. 2006; 16:945‐960. [DOI:10.1016/j.idairyj.2005.10.012]
3. Power O, Jakeman P, FitzGerald RJ. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milkderived antioxidative peptides. Amino Acids. 2013; 44:797-820. [DOI:10.1007/s00726-012-1393-9]
4. Korhonen H. Milk‐derived bioactive peptides: From science to applications. J Funct Foods. 2009; 1:177‐187. [DOI:10.1016/j.jff.2009.01.007]
5. Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitor activity of peanut protein hydrolysate. Food Chem. 2010; 121:178-184. [DOI:10.1016/j.foodchem.2009.12.027]
6. Sharma S, Singh R, Rana S. Bioactive Peptides: A Review. Int J Bioautomation. 2011;15:223-250.
7. WiriyapHan C, Chitsomboon B, Yongsawadigul J. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chem. 2012; 132:104-111. [DOI:10.1016/j.foodchem.2011.10.040]
8. Chen MS, Ouyang HC, Zhou SY, Li JY, Ye YB. PLGA nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxicT cell responses. Immunology and Cell Biology. 2014; 287:91-99. [DOI:10.1016/j.cellimm.2014.01.003]
9. Bougatef A, Hajji M, Balti R. Antioxidant and free radical - scavenging activities of smooth hound muscle protein hydrolysates obtained by gastro intestinal proteases. food chem. 2010; 19:1198-1255. [DOI:10.1016/j.foodchem.2008.10.075]
10. Khantaphant S, Benjakul S, Ghomi MR. The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vita). LWT - Food Sci Technol. 2011; 44:1139-1148. [DOI:10.1016/j.lwt.2010.10.009]
11. Lahart N, O'Callaghan Y, Aherne SA, O'Sullivan D. Extent of hydrolysis effects on casein hydrolysate bioactivity: Evaluation using the human Jurkat T cell line. Int Dairy J. 2011;21:777-782. [DOI:10.1016/j.idairyj.2011.03.014]
12. El-Salam MA, El-Shibiny S. Bioactive peptides of buffalo, camel, goat, sheep, mare, and yak milks and milk products. Food Rev. Int. 2013;29:1-23. [DOI:10.1080/87559129.2012.692137]
13. Nourmohammadi E, Sadeghi Mahoonak A, Alami M, Ghorbani M. Amino acid composition and antioxidative properties of hydrolysed pumpkin (Cucurbita pepo L) oil cake protein. Int J Food Prop. 2017; 20:3244-3255. [DOI:10.1080/10942912.2017.1283516]
14. Moayedi A, Hashemi M, Safari M. 'Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions'. J Food Sci Tech. 2016;53 (1):391-400. [DOI:10.1007/s13197-015-1965-2]
15. Castro RJS, De Sato HH. Comparison and synergistic effects of intact proteins and their hydrolysates on the functional properties and antioxidant activities in a simultaneous process of enzymatic hydrolysis. Food Bioprod Process. 2014;92(1):80-88. [DOI:10.1016/j.fbp.2013.07.004]
16. Fan J, Zhang Y, Chang X, Saito M, Li Z. Changes in the radical scavenging activity of bacterial-type douchi, a traditional fermented soybean product, during the primary fermentation process. Biosci, Biotechnol, Biochem. 2009;73:2749- 2753. [DOI:10.1271/bbb.90361]
17. Taha SF, Mohamed SS, Wagdy MS, Mohamed FG. Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Appl Sci J. 2013; 2:651-658.
18. FAO UNCTAD. From FAO data sited from: UNCTAD from FAO data. 2004.
19. Mohamed B, El-Shenawi M. Functional properties and In-vitro digestibility of bitter orange (Citrus aurantium) seed flour. MRJASSS. 2013; 1(3):042- 047.
20. Samia El-Safy F, Rabab H, Abd El-Ghany ME. Chemical and Nutritional Evaluation of Different Seed Flours as Novel Sources of Protein. World Journal of Dairy & Food Sciences. 2012;7(1): 59-65.
21. AOAC Method 983.23. Fat in foods, chloroform-methanol extraction. In Official methods of analysis. Washington, DC, USA:Association of Official Analytical Chemists. 1990;15:101-101
22. Horax R, Hettiarachchy N, Over K, Chen P, Gbur E. Extraction, fractionation and characterization of Bitter Melon seed proteins. J Agr Food Chem. 2010; 58:1892-1897. [DOI:10.1021/jf902903s]
23. Matsuoka T, Kawashima T, Nakamura T,Kanamaru Y, Yabe T. Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie. 2012; 43:685-697. [DOI:10.1007/s13592-012-0143-z]
24. Wang B, Li L, Chi CF, Ma JH, Luo HY, Xu YF. Purification and characterization of a novel antioxidant peptide derived from blue mussel Mytilusedulis protein hydrolysate. Food chem. 2013;138(2):1713-1719. [DOI:10.1016/j.foodchem.2012.12.002]
25. Umayaparvathia S, Meenakshia S, Vimalrajb V, Arumugama M, Sivagamic G, Balasubramaniana T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition. 2014;4:343-353. [DOI:10.1016/j.bionut.2014.04.006]
26. Chang-Feng Ch, Fa-Yuan H, Bin W, Tao L, Guo-Fang D. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Funct Foods. 2015; 15:301-313. [DOI:10.1016/j.jff.2015.03.045]
27. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337-341. [DOI:10.1006/abio.1999.4019]
28. Sun Q, Shen H, Leu Y. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. J Food Sci and Technolog. 2011;21:6646-6652. [DOI:10.1007/s13197-010-0115-0]
29. Torruco-Uco J, Chel-Guerrero L, Martı'nez-Ayala A, Da'vila-Ortı'z G, Betancur-Ancona D. Angiotensin converting enzyme inhibitory and antioxidant activities of protein. LWT - Food Sci Technol. 2009; 42:1597-1604. [DOI:10.1016/j.lwt.2009.06.006]
30. Guerar F, Guimas l, Binet A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J Mol Catal B-Enzyme. 2002;19:489-498. [DOI:10.1016/S1381-1177(02)00203-5]
31. Oveisipour M, Abedian AM, Motamedzadegan A, Rasco B, Safari R, Shahiri H. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chem. 2009; 115:238-242. [DOI:10.1016/j.foodchem.2008.12.013]
32. Yan QJ, Huang LH, Sun Q, Jiang ZQ, Wu X. Isolation, identification andsynthesis of four novel antioxidant peptides from rice residue protein hydrolysed bymultiple proteases. Food Chem. 2015; 179:290-295. [DOI:10.1016/j.foodchem.2015.01.137]
33. Jin DX, Liu X, Zheng X, Wang X, He J. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem. 2016;204: 427-436. [DOI:10.1016/j.foodchem.2016.02.119]
34. Qian ZJ, Jung WK, Byun HG, Kim SK. Protective effect of an ant oxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource Technol. 2008;99:3365-3371. [DOI:10.1016/j.biortech.2007.08.018]
35. Shuguo S, Meihu M, Qinlu L, Tao Y, Huihui N. Systematic Investigation of Antioxidant Activity of Egg White Protein Hydrolysates Obtained by Pepsin. J Food Sci Technol. 2013;5(1):57-62. [DOI:10.19026/ajfst.5.3312]
36. ildirim A, Mavi, A, Kara, A. Determination of antioxidant and antimicrobial activity of Rumex crispus. J Agr Food Chem. 2001;49:4083-4089. [DOI:10.1021/jf0103572]
37. Je JY, Lee MH, Lee Kh, Ahn CB. Antioxidant and hypertensive proteinhydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int. 2009; 42:1266-1272. [DOI:10.1016/j.foodres.2009.06.013]
38. Oveisipour M, Abedian AM, Motamedzadegan A, Rasco B, Safari R, Shahiri H. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chem. 2009; 115: 238-242. [DOI:10.1016/j.foodchem.2008.12.013]
39. Lassoued I, Mora L, Nasri R, Aydi M, Toldrá F, Aristoy MC, et al. Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Proteomics. 2015;115:28- 37. [DOI:10.1016/j.jprot.2015.05.007]
40. Yang B, Yang H, Li J, Li Z, Jiang Y. Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem. 2011;124: 551-555. [DOI:10.1016/j.foodchem.2010.06.069]
41. Torruco-Uco J, Chel-Guerrero L, Martı'nez-Ayala A, Da'vila-Ortı'z G, Betancur-Ancona D. Angiotensin converting enzyme inhibitory and antioxidant activities of protein. LWT - Food Sci Technol. 2009; 42:1597-1604. [DOI:10.1016/j.lwt.2009.06.006]
42. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem. 2009; 114:1198-1205. [DOI:10.1016/j.foodchem.2008.10.075]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mazloomi N, Sadeghi Mahoonak A, Ghorbani M, Houshmand G, Toldra F. Processing Optimization of Production of Hydrolyzed Protein from Orange Seed Waste with Pepsin Enzyme. Iranian J Nutr Sci Food Technol 2020; 15 (1) :35-48
URL: http://nsft.sbmu.ac.ir/article-1-2788-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 15, Issue 1 (Spring 2020) Back to browse issues page
Iranian Journal of  Nutrition Sciences and Food  Technology
Persian site map - English site map - Created in 0.06 seconds with 35 queries by YEKTAWEB 4692