[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 17, Issue 3 (Autumn 2022) ::
Iranian J Nutr Sci Food Technol 2022, 17(3): 77-86 Back to browse issues page
Investigation of the Effects of Saline Stress and Light Intensity on the Growth Rate of Dunaliella salina and Its Beta-carotene Content and Physiochemical Characteristics
Sh Osia , M Mizani * , A Zargaraan
Professor, Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran , m.mizani@srbiau.ac.ir
Abstract:   (368 Views)
Background and Objectives: Dunaliella salina is a unicellular, mobile green alga, which lacks a rigid cell wall. One of the unique characteristics of Dunaliella salina is the ability to produce and accumulate high contents of beta-carotene. The aim of the present study was to assess and enhance carotenoid, protein and antioxidant compound production in Dunaliella salina cells.
 Materials & Methods: In this study, Dunaliella salina microalga was cultured in modified Johnson culture media under three levels of saline stress (0.5, 1.5 and 2.5 mol) and three levels of light intensity (0,250 and 500 µmol/m2 s) and then effects of the these parameters were investigated.
Results: Results showed that increasing the level of saline stress up to 1.5 mol enhanced the cell growth; however, further increases led to decreases in the cell growth rate. The maximum growth rate of Dunaliella salina was achieved at 1.5 mol salinity and 500 µmol/m2 s light intensity, which was equal to 36.1 cell/ml and the highest content of carotenoids was 24.9 mg/ml. Furthermore, the highest contents of chlorophyll, antioxidants and proteins were 11.5 mg/g, 25.3% and 62.9%, respectively.
Conclusion: Light intensity included more effects on the growth rate and active ingredient content of Dunaliella salina than that it included on salinity. Cultivation under high light intensity (500 µmol/m2 s) increased beta-carotene, chlorophyll, protein and antioxidant contents as well as the high cell growth rate. Salinity of 1.5 mol was suggested as the optimum culture media salinity.
Keywords: Microalgae, Dunaliella salina, Chlorophyll, Protein, Antioxidant, Rheology
Full-Text [PDF 732 kb]   (69 Downloads)    
Article type: Research | Subject: Food Science
Received: 2021/08/5 | Accepted: 2022/07/19 | Published: 2022/10/8
References
1. Rasoul-Amini S, Mousavi P, Montazeri-Najafabady N, Mobasher MA, Mousavi SB, Vosough F, et al. Biodiesel properties of native strain of Dunaliella salina. International Journal of Renewable Energy Research (IJRER). 2014;4(1):39-41.
2. Raja R, Shanmugam H, Ganesan V, Carvalho I. Biomass from microalgae: an overview. Oceanography: Open Access. 2013:1-7.
3. Borowitzka L, Moulton T, Borowitzka M, editors. The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant. Eleventh international seaweed symposium; 1984: Springer. [DOI:10.1007/978-94-009-6560-7_18]
4. Richmond A. Cell response to environmental factors. CRC handbook of microalgal mass culture: CRC Press; 2017. p. 69-100.
5. de Carvalho LMJ, Gomes PB, de Oliveira Godoy RL, Pacheco S, do Monte PHF, de Carvalho JLV, et al. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 2012;47(2):337-40. [DOI:10.1016/j.foodres.2011.07.040]
6. Mayne ST. Beta‐carotene, carotenoids, and disease prevention in humans. The FASEB Journal. 1996;10(7):690-701. [DOI:10.1096/fasebj.10.7.8635686]
7. García F, Freile-Pelegrín Y, Robledo D. Physiological characterization of Dunaliella sp.(Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource technology. 2007;98(7):1359-65. [DOI:10.1016/j.biortech.2006.05.051]
8. Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: methods and applications. Journal of applied microbiology. 2009;107(1):14-35. [DOI:10.1111/j.1365-2672.2009.04153.x]
9. Lee S-Y, Kim S-H, Hyun S-H, Suh HW, Hong S-J, Cho B-K, et al. Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochemistry. 2014;49(6):996-1004. [DOI:10.1016/j.procbio.2014.02.022]
10. Giordano M, Pezzoni V, Hell R. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiology. 2000;124(2):857-64. [DOI:10.1104/pp.124.2.857]
11. Gomez PI, Barriga A, Cifuentes AS, Gonzalez MA. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biological Research. 2003;36(2):185-92. [DOI:10.4067/S0716-97602003000200008]
12. Van Poppel G, Goldbohm RA. Epidemiologic evidence for beta-carotene and cancer prevention. The American journal of clinical nutrition. 1995;62(6):1393S-402S. [DOI:10.1093/ajcn/62.6.1393S]
13. Shaish A, Ben-Amotz A, Avron M. [41] Biosynthesis of β-carotene in Dunaliella. Methods in enzymology. 1992;213:439-44. [DOI:10.1016/0076-6879(92)13145-N]
14. Ginzburg M. Dunaliella: a green alga adapted to salt. Advances in Botanical research. 1988;14:93-183. [DOI:10.1016/S0065-2296(08)60271-2]
15. Fazeli M, Tofighi H, Samadi N, Jamalifar H. Effects of salinity on β-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran. Bioresource Technology. 2006;97(18):2453-6. [DOI:10.1016/j.biortech.2005.10.037]
16. Hejazi M, Wijffels R. Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomolecular Engineering. 2003;20(4-6):171-5. [DOI:10.1016/S1389-0344(03)00046-7]
17. Celekli A, Dönmez G. Effect of pH, light intensity, salt and nitrogen concentrations on growth and β-carotene accumulation by a new isolate of Dunaliella sp. World Journal of Microbiology and Biotechnology. 2006;22(2):183-9. [DOI:10.1007/s11274-005-9017-0]
18. Phadwal K, Singh P. Effect of nutrient depletion on β-carotene and glycerol accumulation in two strains of Dunaliella sp. Bioresource technology. 2003;90(1):55-8. [DOI:10.1016/S0960-8524(03)00090-7]
19. Prieto A, Cañavate JP, García-González M. Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of biotechnology. 2011;151(2):180-5. [DOI:10.1016/j.jbiotec.2010.11.011]
20. Natrah F, Yusoff F, Shariff M, Abas F, Mariana N. Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology. 2007;19(6):711-8. [DOI:10.1007/s10811-007-9192-5]
21. Wang Y-J, Chien Y-H, Pan C-H. Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus. Aquaculture. 2006;261(2):641-8. [DOI:10.1016/j.aquaculture.2006.08.040]
22. Liu Y, Yildiz I. The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. International Journal of Energy Research. 2018;42(9):2997-3006. [DOI:10.1002/er.3967]
23. Erni P, Fischer P, Windhab EJ, Kusnezov V, Stettin H, Läuger J. Stress-and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Review of scientific instruments. 2003;74(11):4916-24. [DOI:10.1063/1.1614433]
24. Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 1995;28(1):25-30. [DOI:10.1016/S0023-6438(95)80008-5]
25. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical biochemistry. 1977;83(2):346-56. [DOI:10.1016/0003-2697(77)90043-4]
26. Frank G. Physiology and biochemistry of glycerol biosynthesis in Dunaliella. 1974.
27. Kumar D, Kastanek P, Adhikary SP. Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Current Science. 2018;115(2):234-41. [DOI:10.18520/cs/v115/i2/234-241]
28. Trenkenshu R. Simplest Models Of Microalgea Growth 2. Queasycontinuous Culture. Ekologiya Morya. 2005(67):98.
29. Rad FA, Aksoz N, Hejazi MA. Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology. 2011;10(12):2282-9.
30. Nikookar K, Moradshahi A, Kharati M. Influence of salinity on the growth, pigmentation and ascorbate peroxidase activity of Dunaliella salina isolated from Maharlu salt lake in Shiraz. Iranian Journal of Science and Technology (Sciences). 2004;28(1):117-25.
31. shariati M, editor Study of beta-carotene synthesis in response to different concentration of heavy metal copper in unicellular green alga Dunaliella salina. 2nd Iranian National Conference of biotechnology; 2001; Karaj, Iran.
32. Borowitzka MA, editor The mass culture of Dunaliella salina. Technical Resource Papers Regional Workshop on the Culture and Utilization of Seaweads; 1990.
33. Gochnauer M, Kushwaha S, Kates M, Kushner D. Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria. Archiv für Mikrobiologie. 1972;84(4):339-49. [DOI:10.1007/BF00409082]
34. GHasemi H. Glycerol production by Dunaliella algae, A thesis presented to the Tarbiyat Modarres University: Tarbiat Modarres University; 1999.
35. Nikoukar K, Moradshahi A, Kharati M. Influencer Of Salinity On The Growth, Pigmentation And Ascorbate Peroxidase Activity Of Dunaliella salina Isolated From Maharlu Salt. 2004.
36. Hashemi SA, Pajoum shariati f, Delavari Amrei H, Heydarinasab A. Growth Pattern and β-Carotene Production of Dunaliella salina Cells in Different Salinities. Journal Of Food Technology And Nutrition. 2019;16(4 (64) #b00612):-.
37. Tammam AA, Fakhry EM, El-Sheekh M. Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta. African Journal of Biotechnology. 2011;10(19):3795-808.
38. Sarmad J, Shariati M, Tafreshi AH. Preliminary Assessment of ß-carotene Accumulation in Four Strains of Dunaliella salina Cultivated under the Different Salinities and Low Light Intensity. 2006. [DOI:10.3923/pjbs.2006.1492.1496]
39. Montazeri-Najafabady N, Negahdaripour M, Salehi MH, Morowvat MH, Shaker S, Ghasemi Y. Effects of osmotic shock on production of β-carotene and glycerol in a naturally isolated strain of Dunaliella salina. Journal of Applied Pharmaceutical Science Vol. 2016;8:160-3. [DOI:10.7324/JAPS.2016.60825]
40. Zhu Q-L, Zheng J-L, Liu J. Transcription activation of β-carotene biosynthetic genes at the initial stage of stresses as an indicator of the increased β-carotene accumulation in isolated Dunaliella salina strain GY-H13. Aquatic Toxicology. 2020;222:105472. [DOI:10.1016/j.aquatox.2020.105472]
41. Xu Y, Ibrahim IM, Wosu CI, Ben-Amotz A, Harvey PJ. Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology. 2018;7(1):14. [DOI:10.3390/biology7010014]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Osia S, Mizani M, Zargaraan A. Investigation of the Effects of Saline Stress and Light Intensity on the Growth Rate of Dunaliella salina and Its Beta-carotene Content and Physiochemical Characteristics. Iranian J Nutr Sci Food Technol 2022; 17 (3) :77-86
URL: http://nsft.sbmu.ac.ir/article-1-3339-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 3 (Autumn 2022) Back to browse issues page
Iranian Journal of  Nutrition Sciences & Food  Technology
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4533