[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
this is a test
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
Subscription::
Contact us::
Site Facilities::
Webmail::
Ethical Consideration::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 19, Issue 3 (Autumn 2024) ::
Iranian J Nutr Sci Food Technol 2024, 19(3): 43-53 Back to browse issues page
Investigating Variables of Time, Extraction Solvent Composition and Ratio of Solvent-to-plant on Antioxidant and Antibacterial Characteristics of Striata Plants and Olive Leaves Using Microwave and Ultrasonic Extraction Methods
M Abolfath , N Cheloei , S Asgari , E Beladian , V Ghasemzadeh-mohammadi *
Asistant Professor, Department of Nutrition and Food Hygiene, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
Abstract:   (232 Views)
Background and Objectives: It is critical to use modern extraction strategies to show ideal characteristics of the plant extricates. In this study, antioxidant and antimicrobial characteristics of the extracts of Scrophularia striata plant and olive leaves were assessed using microwave and ultrasound extraction strategies.
 Materials & Methods: After designing the experiment using Box-Behnken method, extractions were carried out using microwave devices to check effects of microwaves and ultrasonic bath. Phenolic content and antioxidant characteristics were assessed using total phenolic compound and 2,2-Diphenyl-1-picrylhydrazyl methods, respectively. Microdilution broth method was used to assess the minimum inhibitory concentration for Listeria monocytogenes.
Results: The most effective independent variable in extraction in the two methods and in plants was the ratio of solvent to plant. The ratio of ethanol in the extractor solvent affected total phenolic compound and yield. Ultrasound extraction yielded the highest total phenolic compound concentrations for olive leaves (5.34 ±0.26) and Scrophularia striata (2.89 ±0.14 mg.g-1). The best minimum inhibitory concentration (0.47 ±0.005 mg.ml-1) was reported for the olive leaves using ultrasound extraction.
Conclusion: The two extraction methods included various effects on characteristics of the extracts due to the structure and compounds in the two plants. The ultrasound extraction method extracted the highest quantity of phenolic compounds from the two plants. The highest quantity of antioxidant characteristics was linked to microwave extraction. It can be concluded that olive leaves and Scrophularia striata plants can potentially decrease Listeria monocytogenes contamination.
Keywords: Microwave, Ultrasound, Olive leaf, Scrophularia striata, Listeria monocytogenes
Full-Text [PDF 779 kb]   (101 Downloads)    
Article type: Research | Subject: Food Science
Received: 2024/03/10 | Accepted: 2024/06/5 | Published: 2024/10/2
References
1. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants. 2017;6(4):42. [DOI:10.3390/plants6040042]
2. Şahin S, Elhussein E, Bilgin M, Lorenzo JM, Barba FJ, Roohinejad S. Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. Journal of Food Processing and Preservation. 2018;42(5):e13604. [DOI:10.1111/jfpp.13604]
3. Alcántara C, Žugčić T, Abdelkebir R, García-Pérez JV, Jambrak AR, Lorenzo JM, et al. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules. 2020;25(7):(7):1718. [DOI:10.3390/molecules25071718]
4. Kerdar T, Moradkhani S, Dastan D. Phytochemical and Biological Studies of Scrophularia striata from Ilam. Jundishapur J Nat Pharm Prod. 2018;13(3):e62705. [DOI:10.5812/jjnpp.62705]
5. Li X, Liu Y, Jia Q, LaMacchia V, O'Donoghue K, Huang Z. A systems biology approach to investigate the antimicrobial activity of oleuropein. Journal of Industrial Microbiology and Biotechnology. 2016;43(12):1705-17. [DOI:10.1007/s10295-016-1841-8]
6. Dominciano LCdC, Oliveira CAFd, Lee S, Corassin C. Individual and combined antimicrobial activity of oleuropein and chemical sanitizers. J Food Chem Nanotechnol. 2016;2(3):124-7. [DOI:10.17756/jfcn.2016-020]
7. Omar SH, Kerr PG, Scott CJ, Hamlin AS, Obied HK. Olive (Olea europaea L.) Biophenols: A Nutriceutical against Oxidative Stress in SH-SY5Y Cells. Molecules. 2017;22(11):1858. [DOI:10.3390/molecules22111858]
8. Zargoosh Z, Ghavam M, Bacchetta G, Tavili A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports. 2019;9(1):16021. [DOI:10.1038/s41598-019-52605-8]
9. Shohrati M, Mahmoudi R, Nosratpour S, Pajohi-Alamoti M. Chemical composition and biological activities of Scrophularia striata extracts. Minerva Biotecnologica. 2014;26(3):183-9.
10. Giacometti J, Bursać Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International. 2018;113:245-62. [DOI:10.1016/j.foodres.2018.06.036]
11. Abubakar AR, Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioallied Sci. 2020;12(1):1-10. [DOI:10.4103/jpbs.JPBS_175_19]
12. Cruz RMS, Brito R, Smirniotis P, Nikolaidou Z, Vieira MC. Chapter 11 - Extraction of Bioactive Compounds From Olive Leaves Using Emerging Technologies. In: Grumezescu AM, Holban AM, editors. Ingredients Extraction by Physicochemical Methods in Food: Academic Press; 2017. p. 441-61. [DOI:10.1016/B978-0-12-811521-3.00011-9]
13. Swamy GJ, Muthukumarappan K. Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chemistry. 2017;220:108-14. [DOI:10.1016/j.foodchem.2016.09.197]
14. Alara OR, Abdurahman NH, Ali HA, Zain NM. Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: An optimization study and LC-QTOF-MS analysis. Future Foods. 2021;3:100035. [DOI:10.1016/j.fufo.2021.100035]
15. Esmaeelian M, Jahani M, Feizy J, Einafshar S. Effects of Ultrasound-Assisted and Direct Solvent Extraction Methods on the Antioxidant and Antibacterial Properties of Saffron (Crocus sativus L.) Corm Extract. Food Analytical Methods. 2021;14(1):74-87. [DOI:10.1007/s12161-020-01855-8]
16. Polanco-Lugo E, Martínez-Castillo JI, Cuevas-Bernardino JC, González-Flores T, Valdez-Ojeda R, Pacheco N, Ayora-Talavera T. Citrus pectin obtained by ultrasound-assisted extraction: Physicochemical, structural, rheological and functional properties. CyTA - Journal of Food. 2019;17(1):463-71. [DOI:10.1080/19476337.2019.1600036]
17. Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, Cravotto G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry. 2019;118:248-63. [DOI:10.1016/j.trac.2019.05.037]
18. He J-L, Guo H, Wei S-Y, Zhou J, Xiang P-Y, Liu L, et al. Effects of different extraction methods on the structural properties and bioactivities of polysaccharides extracted from Qingke (Tibetan hulless barley). Journal of Cereal Science. 2020;92:102906. [DOI:10.1016/j.jcs.2020.102906]
19. Sheehan B, Kocks C, Dramsi S, Gouin E, Klarsfeld AD, Mengaud J, Cossart P. Molecular and Genetic Determinants of the Listeria monocytogenes Infectious Process. In: Dangl JL, editor. Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms. Berlin, Heidelberg: Springer Berlin Heidelberg; 1994. p. 187-216. [DOI:10.1007/978-3-642-78624-2_9]
20. Costa NR, Lourenço J. Multiresponse problems: desirability and other optimization approaches. Journal of Chemometrics. 2016;30(12):702-14. [DOI:10.1002/cem.2848]
21. Abedi A-S, Rismanchi M, Shahdoostkhany M, Mohammadi A, Mortazavian AM. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. Journal of Food Science and Technology. 2017;54(12):3779-90. [DOI:10.1007/s13197-017-2718-1]
22. Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura-Carretero A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products. 2015;66:246-54. [DOI:10.1016/j.indcrop.2015.01.002]
23. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 2008;3(2):163-75. [DOI:10.1038/nprot.2007.521]
24. Sultana B, Anwar F, Ashraf M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules. 2009;14(6):2167-80. [DOI:10.3390/molecules14062167]
25. De Oliveira C, Rodrigues CdC. Extraction of oleuropein from olive leaves using a hydroalcoholic solvent. Brazilian Journal of Food Technology. 2017;20.
26. Šimat V, Skroza D, Tabanelli G, Čagalj M, Pasini F, Gómez-Caravaca AM, et al. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants. 2022;11(9):1656. [DOI:10.3390/antiox11091656]
27. Vural N, Algan Cavuldak Ö, Kenar A, Akay MA. Green alcoholic solvent and UAE extraction of oleuropein from the Olea europaea L.leaves: Experimental design, optimization, and comparison with Pharmacopoeia method. Separation Science and Technology. 2020;55(10):1813-28. [DOI:10.1080/01496395.2019.1606014]
28. Cifá D, Skrt M, Pittia P, Di Mattia C, Poklar Ulrih N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Science & Nutrition. 2018;6(4):1128-37. [DOI:10.1002/fsn3.654]
29. Guo L, Sun Q, Gong S, Bi X, Jiang W, Xue W, Fei P. Antimicrobial Activity and Action Approach of the Olive Oil Polyphenol Extract Against Listeria monocytogenes. Front Microbiol [Internet]. 2019 2019; 10:[1586 p.]. [DOI:10.3389/fmicb.2019.01586]
30. Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology. 2010;21(7):323-31. [DOI:10.1016/j.tifs.2010.04.003]
31. Mahboubi M, Kazempour N, Boland Nazar AR. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur journal of natural pharmaceutical products. 2013;8(1):15-9. [DOI:10.17795/jjnpp-7621]
32. da Rosa GS, Vanga SK, Gariepy Y, Raghavan V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies. 2019;58:102234. [DOI:10.1016/j.ifset.2019.102234]
33. Jiang H, Liu Z, Wang S. Microwave processing: Effects and impacts on food components. Critical Reviews in Food Science and Nutrition. 2018;58(14):2476-89. [DOI:10.1080/10408398.2017.1319322]
34. Martiny TR, Raghavan V, de Moraes CC, da Rosa GS, Dotto GL. Optimization of green extraction for the recovery of bioactive compounds from Brazilian olive crops and evaluation of its potential as a natural preservative. Journal of Environmental Chemical Engineering. 2021;9(2):105130. [DOI:10.1016/j.jece.2021.105130]
35. CoŞAnsu AkdemİR S, Kiymetlİ Ö. Antimicrobial activity of olive leaf extract on selected foodborne pathogens and its effect on thermal resistance of Listeria monocytogenes in sous vide ground beef. International Journal of Agriculture Environment and Food Sciences. 2021;5(2):236-42. [DOI:10.31015/jaefs.2021.2.14]
36. Şahin S, Samli R, Tan ASB, Barba FJ, Chemat F, Cravotto G, Lorenzo JM. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules. 2017;22(7):1056. [DOI:10.3390/molecules22071056]
37. Rodsamran P, Sothornvit R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience. 2019;28:66-73. [DOI:10.1016/j.fbio.2019.01.017]
38. Hannachi H, Benmoussa H, Saadaoui E, Saanoun I, Negri N, Elfalleh W. Optimization of ultrasound and microwaveassisted extraction of phenolic compounds from olive leaves by response surface methodology. Res. J Biotechnol. 2019;14:7-17.
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abolfath M, Cheloei N, Asgari S, Beladian E, Ghasemzadeh-mohammadi V. Investigating Variables of Time, Extraction Solvent Composition and Ratio of Solvent-to-plant on Antioxidant and Antibacterial Characteristics of Striata Plants and Olive Leaves Using Microwave and Ultrasonic Extraction Methods. Iranian J Nutr Sci Food Technol 2024; 19 (3) :43-53
URL: http://nsft.sbmu.ac.ir/article-1-3826-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 3 (Autumn 2024) Back to browse issues page
Iranian Journal of  Nutrition Sciences and Food  Technology
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4660