[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
this is a test
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
Subscription::
Contact us::
Site Facilities::
Webmail::
Ethical Consideration::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 3 (Autumn 2019) ::
Iranian J Nutr Sci Food Technol 2019, 14(3): 41-50 Back to browse issues page
Determination of Optimum Conditions for the Production of Peptides with Antioxidant and Nitric-Oxide Inhibition Properties from Protein Hydrolysis of Pumpkin Seed Meals Using Pepsin Enzyme
K Zakeri , M Ghorbani * , AR Sadeghi Mahoonak , A Moaeedi , Y Maghsoudlu
, moghorbani@yahoo.com
Abstract:   (2491 Views)
Background and Objectives: In this study, hydrolysis condition optimization of the pumpkin (Cucurbita pepo) seed proteins was carried out achieve maximum DPPH radical scavenging and nitric-oxide inhibition properties using Design Expert Software and response surface methodology.
 Materials & Methods: In general, 1–3% concentrations of pepsin enzyme, 30–40 °C temperature and 120–100 min time were selected as the independent variables.
Results: Results showed that the optimum conditions for achieving maximum DPPH radical scavenging and nitric-oxide inhibition activities included temperature of 32 °C, time of 161.5 min and an enzyme-substrate ratio of 3% with antioxidant and nitric-oxide inhibitory activities of 54.63 and 89.09%, respectively. These results were largely similar to the results suggested by the software (56.03 and 91.92%, respectively).
Conclusion: Based on the results, hydrolyzed proteins of the pumpkin seeds include good antioxidant and nitric-oxide inhibitory activities and can therefore be used as natural compounds for replacing synthetic preservatives in food products.
 
Keywords: Enzymatic hydrolysis, Pepsin, Response surface method, Antioxidant, Nitric-oxide inhibition
Full-Text [PDF 709 kb]   (1158 Downloads)    
Article type: Research | Subject: Food Science
Received: 2018/05/31 | Accepted: 2018/09/26 | Published: 2019/10/7
References
1. Torruco-Uco J, Chel-Guerrero L, Martínez-Ayala A, Dávila-Ortíz, G, Betancur-Ancona D. Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT-Food Science and Technology 2009; 42(10): 1597-1604. [DOI:10.1016/j.lwt.2009.06.006]
2. Fritz M, Vecchi B, Rinaldi G, Cristina Anon M. Amaranth seed protein hydrolysates have in vitro antihypertensive activity. Food Chemistry 2011; 126: 878-884. [DOI:10.1016/j.foodchem.2010.11.065]
3. Marshall SH, Arenas G. Antimicrobial peptids: A natural alternative to chemical antibiotics and a potential biotechnology. Electronic Journal of Biotechnology 2003; 6: 271-284. [DOI:10.2225/vol6-issue3-fulltext-1]
4. Sharma S, Singh R, Rana S. Bioactive peptides: a review. International Journal of Bioautomation 2011; 15: 223-50.
5. Ohinata K, Agui S, Yoshikawa M. Soymorphins, novel mu opioid peptides derived from soy β-conglycinin β subunit, have anxiolytic activities. BioScientific, Biotechnology, Biochemistry 2007; 71: 2618 2621. [DOI:10.1271/bbb.70516]
6. Cho SJ, Juillerat MA, Lee CH. Identification of LDL-receptor transcription stimulating peptides from soybean hydrolysate in human hepatocytes. Journal of Agricultural and Food Chemistry 2008; 56: 4372-4376. [DOI:10.1021/jf800676a]
7. Kou X, Gao J, Xue Z, Zhang Z, Wang H, Wang X. Purification and identification of antioxidant peptides fromchickpea (Cicer arietinum L.) albumin hydrolysates. LWT-Food Science and Technology 2013; 50: 591-598. [DOI:10.1016/j.lwt.2012.08.002]
8. Rajapakse N, Yung W, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences 2005; 76: 2607-2619. [DOI:10.1016/j.lfs.2004.12.010]
9. Hauser E,Yam I, Yerman P. Nitrosamine in leben esmitteln. Swiss Food 1980; 2: 13-22.
10. Nourmohammadi E, Sadeghi mahoonak AR, Ghorbani M, Alami M, Sadeghi M. Identification of the optimum conditions to anti-oxidative peptides production through the enzymatic hydrolysis of pumpkin oil cake protein by pepsin. Journal of Food Science and Technology 2017; 61(13): 135-142. [in Persian]
11. Piri S, Sadeghi mahoonak A R, Ghorbani M, Alami M. Production and study on antioxidant activity of protein hydrolysate from whey protein. Journal of Research and Innovation in Food Science and Technology 2016; 3(4): 272-282. [in Persian]
12. Mehrgan nikoo A, Sadeghi mahoonak AR, Ghorbani M, Taheri A, Aalami M. Optimization of different factors affecting antioxidant activity of crucian carp (Carassius carassius) protein hydrolysate by response surface methodology. Food Processing and Preservation Journal 2014; 1: 95-110. [in Persian]
13. Khantaphant S, Benjakul S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology 2008; 151: 410-419. [DOI:10.1016/j.cbpb.2008.08.011]
14. Klompong V, Benjakul S, Yachai M, Visessanguan W, Shahidi F, Hayes KD. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of Food Science 2009; 74: 126-133. [DOI:10.1111/j.1750-3841.2009.01047.x]
15. Chen HM, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean b-Conglycinin. Journal of Agricultural and Food Chemistry 1995; 43: 574-578. [DOI:10.1021/jf00051a004]
16. Hernandez-Ledesma B, Davalos A, Bartolome B, Amigo L. Preparation of antioxidant enzymatic hydrolysates from a-lactalbumin and b- actoglobulin. Identification of active peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry 2005; 53: 588-593. [DOI:10.1021/jf048626m]
17. Davalos A, Miguel M, Bartolome B, Lopez-Fandino R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection 2004; 67: 1939-1944. [DOI:10.4315/0362-028X-67.9.1939]
18. Maria DC, Antonella F, Iolanda A, Rosa CB, Agustin OA, Dolfo MR. In vitro release of angiotensinconverting enzyme inhibitors, peroxyl-radical scavengers and antibacterial compounds by enzymatic hydrolysis of glycated gluten. Journal of Cereal Science 2007; 45: 327-334. [DOI:10.1016/j.jcs.2006.09.005]
19. Li GH, Qu MR, Wan JZ, You JM. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clining Nutrition 2007; 16: 275-280.
20. Reham M, Reham R, Lamiaa A. Effect of substituting pumpkin seed protein isolate for casein on serum liver enzymes, lipid profile and antioxidant enzymes in CC14-intoxicated rats. Advances in Biological Research 2009; 3: 9-15.
21. Kaur M, Singh N. Characterization of protein isolates from different Indian chickpea (Cicerarietinum L.) cultivars. Food Chemistry 2007; 102: 366-374. [DOI:10.1016/j.foodchem.2006.05.029]
22. Glew RH, Glew RS, Chuang LT, Huang YS, Millson M, Constans D, et al. Amino Acid, Mineral and Fatty Acid Content of Pumpkin Seeds (Cucurbita spp) and Cyperus esculentus Nuts in the Republic of Niger. Plant Foods for Human Nutrition 2006; 61: 51-56. [DOI:10.1007/s11130-006-0010-z]
23. Živanović I, Vaštag Z, Popović, S., Popović, L., Peričin, D. Hydrolysis of hull-Less pumpkin oil cake protein isolate by Pepsin. International Journal of Biological and Life Sciences 2011; 7: 30-34.
24. Villanueva A, Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Bautista J, et al. Peptide Characteristics of Sunflower Protein Hydrolysates. Journal of the American Oil Chemists' Society 1999; 76: 1455-1460. [DOI:10.1007/s11746-999-0184-2]
25. Parvaneh V. Quality control and chemical analysis of foods. Tehran Univ. Press 2004; 332p. [in Persian]
26. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry 2009; 114: 1198-1205. [DOI:10.1016/j.foodchem.2008.10.075]
27. Tsai PJ, Tsai TH, Yu CH, Ho SC. Comparison of No-scavenging and NO-suppressing activity of different herbal teas with those of green tea. Food Chemistry 2007; 103: 181-187. [DOI:10.1016/j.foodchem.2006.08.013]
28. Taheri A, Abedian Kenari A, Motamedzadegan A, Habibi-Rezaei M. Poultry By-Products and Enzymatic Hydrolysis: Optimization by Response Surface Methodology Using Alcalase® 2.4L. International Journal of Food Engineering 2011; 7(5): 1556-3758. [in Persian] [DOI:10.2202/1556-3758.1969]
29. Khantaphant S, Benjakula S, Kishimurab H. Antioxidative and ACE inhibitory activities of proteinhydrolysates from the muscle of brownstripe red snapper preparedusing pyloric caeca and commercial proteases. Process Biochemistry 2011; 46(1): 318-327. [DOI:10.1016/j.procbio.2010.09.005]
30. Mazloomi SN, Sadeghi Mahoonak AR. Characterization of Nutritional properties of protein Isolate of pumpkin (Cucurbita pepo Con. Pepo Var Styriaca) seeds. Journal of Food Science and Technology 2017; 70(14): 13-25. [in Persian]
31. Meshkinfar N, Sadeghi Mahoonak AR, Ziaiifar AM, Ghorbani M, Kashani Nejad M. Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Tabriz, Journal of Food Researches 2014; 24(2): 215-225.
32. Phelan M, Aherne A, FitzGerald R, O'Brien N. Casein-derived bioactive peptides: biological effects, uses, safety aspects and regulatory status. International Dairy Journal 2009; 19(11): 643-654. [DOI:10.1016/j.idairyj.2009.06.001]
33. Sun Q, Shen H, Luo Y. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of food science and technology 2011; 48(1): 53-60. [DOI:10.1007/s13197-010-0115-0]
34. WiriyapHan C, Chitsomboon B, Yongsawadigul J. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry 2012; 132: 104-111. [DOI:10.1016/j.foodchem.2011.10.040]
35. Yu L, Zhao M, Wang JS, Cui Ch, Yang, B, Jiang Y, et al. Antioxidant, immunomodulatory and anti-breast cancer activities of pHenolic extract from pine (Pinus massoniana Lamb.) bark. Innovative Food Science and Emerging Technologies 2007; 9: 122-125. [DOI:10.1016/j.ifset.2007.06.006]
36. Zhonggao C, Felgines O, Texier C, Besson DJ, Liu J, Wang S. Antioxidant activities of total pigment extract from blackberries. Food Technology and Biotechnology 2005; 43(1): 97-102.
37. Nikkhah A, Khayami M, Heidari R. Evaluation of nitric oxide scavenging activity of anthocyanins from black berry (Morus nigra L.), strawberry (Fragaria vesca L.) and berry (Morus alba L. Var. nigra) extracts. Scientific & Research Journal of Iranian Medicinal & Aromatic Plants 2011; 25(1): 120-128. [in Persian]
38. Parul R, Kundu SK, Saha P. In Vitro Nitric Oxide Scavenging Activity Of Methanol Extracts Of Three Bangladeshi Medicinal Plants. The Pharma Innovation 2013; 12(1): 83-88.
39. Kwon JH, Kim JH, Choi SE, Park KH, Lee MW. Inhibitory Effects of Phenolic Compounds from Needles of Pinus densiflora on Nitric Oxide and PGE2 Production. Archives Pharmacal Research 2010; 33(12): 2011-2016. [DOI:10.1007/s12272-010-1217-y]
40. Lee J, Sowndhararajan K, Kim M, Kim J, Kim D, Kim S, Kim G, Kim S, Jhoo J. Antioxidant, inhibition of a-glucosidase and suppression of nitric oxide production in LPS-induced murine macrophages by different fractions of Actinidia arguta stem. Saudi Journal of Biological Sciences 2014; 1-7. [DOI:10.1016/j.sjbs.2014.01.006]
41. Shrestha S, Lee DY, Park JH, Cho JG, Lee DS, Li B, Kim YC, Kim GS, Bang MH, Baek NI. Phenolic components from Rhus parviflora fruits and their inhibitory effects on lipopolysaccharideinduced nitric oxide production in RAW 264.7 macrophages. Natural Product Research 2013; 27(30): 2244-2247. [DOI:10.1080/14786419.2013.814050]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zakeri K, Ghorbani M, Sadeghi Mahoonak A, Moaeedi A, Maghsoudlu Y. Determination of Optimum Conditions for the Production of Peptides with Antioxidant and Nitric-Oxide Inhibition Properties from Protein Hydrolysis of Pumpkin Seed Meals Using Pepsin Enzyme. Iranian J Nutr Sci Food Technol 2019; 14 (3) :41-50
URL: http://nsft.sbmu.ac.ir/article-1-2648-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 3 (Autumn 2019) Back to browse issues page
Iranian Journal of  Nutrition Sciences and Food  Technology
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645