[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 16, Issue 4 (Winter 2022) ::
Iranian J Nutr Sci Food Technol 2022, 16(4): 1-8 Back to browse issues page
Effects of Raspberry Fruit (Rubus anatolicus (focke) foke ex hausskn( Hydroalcoholic Extract on Blood Glucose, Lipid Profile and Oxidative Stress Markers in Streptozotocin-diabetic Rats
E Moghassemi , M Jafari , M Saghaeian Jazi , M Hosseini , M Tajodini , MA Zeyghami , AZ Mansourian *
Golestan University of Medical Sciences
Abstract:   (367 Views)
Background and Objectives: Diabetes is one of the most common endocrine disorders worldwide. Rubus anatolicus is rich in polyphenolic compounds that can protect individual from various chronic diseases such as diabetes. This study was carried out to investigate effects of hydroalcoholic extract of raspberry fruit Rubus anatolicus (focke) on blood glucose levels, lipid profiles and oxidative stress markers in streptozotocin-induced diabetic rats.
 Materials & Methods: In this study, 32 male Wistar rats weighing 150–200 g were used. Diabetes was induced in rats using streptozotocin and diabetic animals were then treated with raspberry fruit hydroalcoholic extract for 14 days. Rats were anesthetized using xylazine and ketamine mixture and sacrificed. Then, whole blood samples were collected from the animal hearts to assess their serum glucose levels, lipid profiles and oxidative markers. The p-value < 0.05was considered as significant.
Results: Results of the present study showed that raspberry fruit extracts significantly decreased serum glucose levels, triglycerides, cholesterol, low-density lipoproteins and malondialdehyde levels in diabetic rats, compared to the diabetic control rats (p < 0.05). Moreover, serum low-density lipoproteins level, total antioxidant capacity and superoxide dismutase activity significantly increased in diabetic rats, compared to diabetic control rats (p < 0.05).
Conclusion: ‌The present study showed that fruit extract raspberry included good effects ‌on blood glucose levels, lipid profiles and oxidative stress conditions ‌in diabetic rats.
Keywords: Raspberry, Blood Glucose, Lipid Profile, Oxidative Stress, Diabetic Rat
Full-Text [PDF 494 kb]   (111 Downloads)    
Article type: Research | Subject: nutrition
Received: 2021/05/3 | Accepted: 2021/06/28 | Published: 2021/12/14
1. Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice. 2018;138:271-81. [DOI:10.1016/j.diabres.2018.02.023]
2. Mohammadi M, Mirzaei M, Karami M. Potential impact fraction of ischemic heart disease associated with diabetes mellitus in Yazd-Iran. Iranian Journal of Epidemiology. 2018;13(4):299-307.
3. Osborn DP, Wright CA, Levy G, King MB, Deo R, Nazareth I. Relative risk of diabetes, dyslipidaemia, hypertension and the metabolic syndrome in people with severe mental illnesses: systematic review and metaanalysis. Bmc Psychiatry. 2008;8(1):1-14. [DOI:10.1186/1471-244X-8-84]
4. Hashemipour-Zavareh M, Yousofi Z, Hashemipour M. Comparison of the Dimensions of Coherence and Family Adaptability among the Mothers of Children with Type 1 Diabetes and Healthy Children in Isfahan City, Iran. J Isfahan Med Sch 2018; 36(498): 1183-90[in Persian].
5. McPherson RA. Henry's Clinical Diagnosis and Management by Laboratory Methods: First South Asia Edition_e-Book: Elsevier India; 2017.
6. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes care. 2012;35(3):556-64. [DOI:10.2337/dc11-1909]
7. Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. American Journal of Kidney Diseases. 2018;71(6):884-95. [DOI:10.1053/j.ajkd.2017.10.026]
8. King GL. The role of inflammatory cytokines in diabetes and its complications. Journal of periodontology. 2008;79:1527-34. [DOI:10.1902/jop.2008.080246]
9. Karunakaran U, Park K-G. A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes & metabolism journal. 2013;37(2):106. [DOI:10.4093/dmj.2013.37.2.106]
10. Tabatabaei-Malazy O, Ardeshirlarijani E, Namazi N, Nikfar S, Jalili RB, Larijani B. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. Journal of Diabetes & Metabolic Disorders. 2019;18(2):705-16. [DOI:10.1007/s40200-019-00434-x]
11. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi pharmaceutical journal. 2016;24(5):547-53. [DOI:10.1016/j.jsps.2015.03.013]
12. Ceriello A. Oxidative stress and diabetes-associated complications. Endocrine Practice. 2006;12:60-2. [DOI:10.4158/EP.12.S1.60]
13. Hosseini SE, Tavakoli F, Karami M. Medicinal plants in the treatment of diabetes mellitus. Clinical Excellence. 2014;2(2):64-89.
14. Ghorbanli M., Livani F., Sateyi A.. AN Analysis of The Antioxidant Compounds in The Alcoholic Extractions And The Juice of Elm-Leaf Blackberry or Rubus Anatolicus (Focke, I.E. Focke ex Hausskn.) During The Ripening Period. Plant And Ecosystem. 2013 [cited 2021June23];8(33-1 (Supplement)):16-26[in Persian].
15. Kasalkheh Razieh, Jorjani Eisa, Sabouri Hossein, Habibi Meisam, Sattarian Ali. Anatomical Study of Rubus Subgenus Rubus in Iran. Journal of Taxonomy And Biosistematics. 2016 [cited 2021June23];8(27 ):19-38[in Persian].
16. Bardei K. The effects of hydro-alcoholic extract of raspberry fruit on ovarian follicles and serum parameters in poly cystic ovary syndrome-induced rat. Armaghane danesh. 2015;19(11):955-68.
17. Khalighi Sigaroodi F, Ahvazi M, Ebrahimzadeh H, Rahimifard N. Chemical Composition of The Essential Oil And Antioxidant Activities, Total Phenol And Flavonoid Content of The Extract of Nepeta Pogonosperma. Journal of Medicinal Plants. 2013;12(48):-.
18. Azofeifa G, Quesada S, Navarro L, Hidalgo O, Portet K, Pérez AM, et al. Hypoglycaemic, hypolipidaemic and antioxidant effects of blackberry beverage consumption in streptozotocin-induced diabetic rats. Journal of functional foods. 2016;26:330-7. [DOI:10.1016/j.jff.2016.08.007]
19. Sharma U, Kumar A. Anti-diabetic effect of Rubus ellipticus fruit extracts in alloxan induced diabetic rats. Journal of Diabetology. 2011;2(2):4.
20. Kim J, An J, Lee H, Kim K, Lee SJ, Choi HR, et al. Multifaceted effect of Rubus Occidentalis on hyperglycemia and hypercholesterolemia in mice with diet-induced metabolic diseases. Nutrients. 2018;10(12):1846. [DOI:10.3390/nu10121846]
21. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000;43(12):1528-33. [DOI:10.1007/s001250051564]
22. Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, et al. Poly (ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proceedings of the National Academy of Sciences. 1999;96(6):3059-64. [DOI:10.1073/pnas.96.6.3059]
23. Thulesen J, Ørskov C, Holst JJ, Poulsen SS. Short term insulin treatment prevents the diabetogenic action of streptozotocin in rats. Endocrinology. 1997;138(1):62-8. [DOI:10.1210/endo.138.1.4827]
24. Raghavendra H, Upashe S, Reyes D, Floriano J. Antidiabetic and Antioxidant Activity of Rubus apetalus Poir. and Rubus steudneri Schweinf. Leaf Extract on Alloxan Induced Diabetes Mellitus J Bioanal Biomed. 2019;11:149-54.
25. Motevalian M, Javadpour SM. Anti-diabetic effects of blackberry (Rubus Fruticosus) extract on normal and STZ induced diabetic rats. Iranian Journal of Pharmacology and Therapeutics. 2017;15(1):1-10.
26. Tumbas Šaponjac V, Gironés‐Vilaplana A, Djilas S, Mena P, Ćetković G, Moreno DA, et al. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. Journal of the Science of Food and Agriculture. 2014;94(12):2393-400. [DOI:10.1002/jsfa.6564]
27. Nam MK, Choi HR, Cho JS, Cho SM, Ha KC, Kim T-H, et al. Inhibitory effects of Rubi Fructus extracts on hepatic steatosis development in high-fat diet-induced obese mice. Molecular medicine reports. 2014;10(4):1821-7. [DOI:10.3892/mmr.2014.2398]
28. Noratto GD, Chew BP, Atienza LM. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food chemistry. 2017;227:305-14. [DOI:10.1016/j.foodchem.2017.01.097]
29. Tian J-L, Si X, Wang Y-H, Gong E-S, Xie X, Zhang Y, et al. Bioactive flavonoids from Rubus corchorifolius inhibit α-glucosidase and α-amylase to improve postprandial hyperglycemia. Food Chemistry. 2021;341:128149. [DOI:10.1016/j.foodchem.2020.128149]
30. Kim KJ, Jeong E-S, Lee KH, Na J-R, Park S, Kim JS, et al. Unripe Rubus coreanus Miquel Extract Containing Ellagic Acid Promotes Lipolysis and Thermogenesis In Vitro and In Vivo. Molecules. 2020;25(24):5954. [DOI:10.3390/molecules25245954]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghassemi E, Jafari M, Saghaeian Jazi M, Hosseini M, tajodini M, Zeyghami M et al . Effects of Raspberry Fruit (Rubus anatolicus (focke) foke ex hausskn( Hydroalcoholic Extract on Blood Glucose, Lipid Profile and Oxidative Stress Markers in Streptozotocin-diabetic Rats. Iranian J Nutr Sci Food Technol. 2022; 16 (4) :1-8
URL: http://nsft.sbmu.ac.ir/article-1-3273-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 4 (Winter 2022) Back to browse issues page
Iranian Journal of  Nutrition Sciences & Food  Technology
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4374