1. Tang CH. Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (A review). Food Hydrocolloids. 2020 Dec 1; 109:106106. [ DOI:10.1016/j.foodhyd.2020.106106] 2. Kabir M, Rahman M, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A. Albadrani GM, Kamel M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules. 2021 Mar 7; 11(3):392. [ DOI:10.3390/biom11030392] 3. Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-viral potential and modulation of Nrf2 by curcumin: Pharmacological implications. Antioxidants. 2020 Dec 4; 9(12):1228. [ DOI:10.3390/antiox9121228] 4. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS Journal. 2013 Jan; 15(1):195-218. [ DOI:10.1208/s12248-012-9432-8] 5. Chen Y, Lu Y, Lee RJ, Xiang G. Nano encapsulated curcumin: and its potential for biomedical applications. International Journal of Nanomedicine. 2020; 15:3099. [ DOI:10.2147/IJN.S210320] 6. Golonko A, Lewandowska H, Świsłocka R, Jasińska UT, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. European Journal of Medicinal Chemistry. 2019 Nov 1; 181:111512. [ DOI:10.1016/j.ejmech.2019.07.015] 7. Tajbakhsh A, Hasanzadeh M, Rezaee M, Khedri M, Khazaei M, ShahidSales S, Ferns GA, Hassanian SM, Avan A. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. Journal of Cellular Physiology. 2018 Mar; 233(3):2183-92. [ DOI:10.1002/jcp.25961] 8. Głąb TK, Boratyński J. Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry. 2017 Aug; 375(4):1-20. [ DOI:10.1007/s41061-017-0158-z] 9. Typek R, Dawidowicz AL, Wianowska D, Bernacik K, Stankevič M, Gil M. Formation of aqueous and alcoholic adducts of curcumin during its extraction. Food Chemistry. 2019 Mar 15; 276:101-9. [ DOI:10.1016/j.foodchem.2018.10.006] 10. Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, Zhai G. Oral bioavailability of curcumin: problems and advancements. Journal of Drug Targeting. 2016 Sep 13;24(8):694-702. [ DOI:10.3109/1061186X.2016.1157883] 11. Wand CR, Fayaz-Torshizi M, Jiménez-Serratos G, Müller EA, Frenkel D. Solubilities of pyrene in organic solvents: Comparison between chemical potential calculations using a cavity-based method and direct coexistence simulations. The Journal of Chemical Thermodynamics. 2019 Apr 1; 131:620-9. [ DOI:10.1016/j.jct.2018.11.029] 12. Kaya-Celiker H, Mallikarjunan K. Better nutrients and therapeutics delivery in food through nanotechnology. Food Engineering Reviews. 2012 Jun; 4(2):114-23. [ DOI:10.1007/s12393-012-9050-3] 13. Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. Journal of Controlled Release. 2016 Mar 10; 225:1-30. [ DOI:10.1016/j.jconrel.2016.01.018] 14. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014 Mar 1; 35(10):3365-83. [ DOI:10.1016/j.biomaterials.2013.12.090] 15. Ranadheera CS, Liyanaarachchi WS, Chandrapala J, Dissanayake M, Vasiljevic T. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends in Food Science & Technology. 2016 Nov 1; 57:178-87. [ DOI:10.1016/j.tifs.2016.10.005] 16. Soukoulis C, Bohn T. A comprehensive overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition. 2018 Jan 2; 58(1):1-36. [ DOI:10.1080/10408398.2014.971353] 17. Murthy KC, Monika P, Jayaprakasha GK, Patil BS. Nanoencapsulation: An advanced nanotechnological approach to enhance the biological efficacy of curcumin. Advances in Plant Phenolics: From Chemistry to Human Health 2018 (pp. 383-405). American Chemical Society. [ DOI:10.1021/bk-2018-1286.ch021] 18. Jain H, Chella N. Methods to improve the solubility of therapeutical natural products: a review. Environmental Chemistry Letters. 2021 Feb; 19(1):111-21. [ DOI:10.1007/s10311-020-01082-x] 19. Dai C, Du M, Zhao M, You Q, Guan B, Wang X, Liu P. Study of micelle formation by fluorocarbon surfactant N-(2-hydroxypropyl) perfluorooctane amide in aqueous solution. The Journal of Physical Chemistry B. 2013 Aug 29; 117(34):9922-8. [ DOI:10.1021/jp404387d] 20. Barbosa JA, Conway BR, Merchant HA. Going natural: using polymers from nature for gastroresistant applications. British Journal of Pharmacy. 2017 Jan; 2(1):14-30. [ DOI:10.5920/bjpharm.2017.01] 21. Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science. 2020 Apr 1; 278:102122. [ DOI:10.1016/j.cis.2020.102122] 22. Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H, Aschberger K, Rauscher H, Amenta V, Arena M, Botelho Moniz F, Gottardo S. Inventory of Nanotechnology applications in the agricultural, feed and food sector. European Food Safety Authority(EFSA) Report-EN-621. 2014 Jul 17; 11(7):125 pp. [ DOI:10.2903/sp.efsa.2014.EN-621] 23. Li M. Studies on selected physicochemical properties and microstructure of β-casein-enriched ingredients for applications in formulated nutritional products. (Doctoral dissertation, University College Cork,2020) 24. Wand CR, Totton TS, Frenkel D. Addressing hysteresis and slow equilibration issues in cavity-based calculation of chemical potentials. The Journal of Chemical Physics. 2018 Jul 7; 149(1):014105. [ DOI:10.1063/1.5036963] 25. Espinosa JR, Wand CR, Vega C, Sanz E, Frenkel D. Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water. The Journal of Chemical Physics. 2018 Dec 14; 149(22):224501. [ DOI:10.1063/1.5054056] 26. Sáiz-Abajo MJ, González-Ferrero C, Moreno-Ruiz A, Romo-Hualde A, González-Navarro CJ. Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chemistry. 2013 Jun 1; 138(2-3):1581-7. [ DOI:10.1016/j.foodchem.2012.11.016] 27. Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition. 2019 Nov 30; 59(21):3468-97. [ DOI:10.1080/10408398.2018.1495174] 28. Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition. 2019 Oct 28; 59(19):3129-51. [ DOI:10.1080/10408398.2018.1484687] 29. Mohammadian M, Waly MI, Moghadam M, Emam-Djomeh Z, Salami M, Moosavi-Movahedi AA. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness. 2020 Sep 1; 9(3):199-213. [ DOI:10.1016/j.fshw.2020.04.009] 30. Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials. 2020 Sep; 10(9):1649. [ DOI:10.3390/nano10091649] 31. Arranz E, Corredig M, Guri A. Designing food delivery systems: challenges related to the in vitro methods employed to determine the fate of bioactives in the gut. Food & Function. 2016; 7(8):3319-36. [ DOI:10.1039/C6FO00230G] 32. Lee WH, Loo CY, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opinion on Drug Delivery. 2014 Aug 1; 11(8):1183-201. [ DOI:10.1517/17425247.2014.916686] 33. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today. 2012 Jan 1; 17(1-2):71-80. [ DOI:10.1016/j.drudis.2011.09.009] 34. Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering. 2019 Mar; 6(1):26. [ DOI:10.3390/bioengineering6010026] 35. Cerqueira MÂ, Pinheiro AC, Ramos OL, Silva H, Bourbon AI, Vicente AA. Advances in food nanotechnology. Book: Emerging Nanotechnologies in Food Science 2017 Jan 1 (pp. 11-38). Elsevier. [ DOI:10.1016/B978-0-323-42980-1.00002-9] 36. Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, Yousefi R, Chobert JM, Haertlé T, Moosavi-Movahedi AA. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-Food Science and Technology. 2011 Dec 1; 44(10):2166-72. [ DOI:10.1016/j.lwt.2011.05.023] 37. Zou L, Liu W, Liu C, Xiao H, McClements DJ. Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. Journal of Agricultural and Food Chemistry. 2015 Feb 25; 63(7):2052-62. [ DOI:10.1021/jf506149f] 38. Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: contemporary developments and challenges. Biomaterials. 2017 Jul 1; 134:91-116. [ DOI:10.1016/j.biomaterials.2017.04.036] 39. Elzoghby AO, Elgohary MM, Kamel NM. Implications of protein-and peptide-based nanoparticles as potential vehicles for anticancer drugs. Advances in Protein Chemistry and Structural Biology. 2015 Jan 1; 98:169-221. [ DOI:10.1016/bs.apcsb.2014.12.002] 40. Hanafy NA, Leporatti S, El-Kemary M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. Materials Science and Engineering C. 2020 Nov 1; 116:111119. [ DOI:10.1016/j.msec.2020.111119] 41. Li J, Shin GH, Lee IW, Chen X, Park HJ. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids. 2016 May 1; 56:41-9. [ DOI:10.1016/j.foodhyd.2015.11.024] 42. Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020 Jan; 25(12):2791. [ DOI:10.3390/molecules25122791] 43. Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Research International. 2016 Jun 1; 84:113-9. [ DOI:10.1016/j.foodres.2016.03.031] 44. Zou L, Zheng B, Zhang R, Zhang Z, Liu W, Liu C, Xiao H, McClements DJ. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Research International. 2016 Mar 1; 81:74-82 [ DOI:10.1016/j.foodres.2015.12.035] 45. Taha S, El-Sherbiny I, Enomoto T, Salem A, Nagai E, Askar A, Abady G, Abdel-Hamid M. Improving the functional activities of curcumin using milk proteins as nanocarriers. Foods. 2020 Aug; 9(8):986. [ DOI:10.3390/foods9080986] 46. Chen FP, Zhang N, Tang CH. Food proteins as vehicles for enhanced water dispersibility, stability and bioaccessibility of coenzyme Q10. LWT-Food Science and Technology. 2016 Oct 1; 72:125-33. [ DOI:10.1016/j.lwt.2016.04.040] 47. Gupta C, Arora S, Syama MA, Sharma A. Preparation of milk protein-vitamin A complexes and their evaluation for vitamin A binding ability. Food Chemistry. 2017 Dec 15; 237:141-9. [ DOI:10.1016/j.foodchem.2017.05.106] 48. Hu Y, Bao C, Li D, You L, Du Y, Liu B, Li X, Ren F, Li Y. The construction of enzymolyzed α-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds. Food & Function. 2019; 10(12):8263-72. [ DOI:10.1039/C9FO02035G] 49. Gorji EG, Rocchi E, Schleining G, Bender-Bojalil D, Furtmüller PG, Piazza L, Iturri JJ, Toca-Herrera JL. Characterization of resveratrol-milk protein interaction. Journal of Food Engineering. 2015 Dec 1; 167:217-25. [ DOI:10.1016/j.jfoodeng.2015.05.032] 50. Elzoghby AO, Saad NI, Helmy MW, Samy WM, Elgindy NA. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. European Journal of Pharmaceutics and Biopharmaceutics. 2013 Nov 1; 85(3):444-51. [ DOI:10.1016/j.ejpb.2013.07.003] 51. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharmaceutical Research. 2013 Oct; 30(10):2654-63. [ DOI:10.1007/s11095-013-1091-7] 52. Ianni A, Bennato F, Martino C, Grotta L, Franceschini N, Martino G. Proteolytic Volatile Profile and Electrophoretic Analysis of Casein Composition in Milk and Cheese Derived from Mironutrient-Fed Cows. Molecules. 2020 Jan; 25(9):2249. [ DOI:10.3390/molecules25092249] 53. Lelis CA, Nunes NM, de Paula HM, Coelho YL, da Silva LH, dos Santos Pires AC. Insights into protein-curcumin interactions: Kinetics and thermodynamics of curcumin and lactoferrin binding. Food Hydrocolloids. 2020 Aug 1; 105:105825. [ DOI:10.1016/j.foodhyd.2020.105825] 54. Rehan F, Ahemad N, Gupta M. Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids and Surfaces B: Biointerfaces. 2019 Jul 1; 179:280-92. [ DOI:10.1016/j.colsurfb.2019.03.051] 55. Zhong Q, Chen H, Zhang Y, Pan K, Wang W.(Editors): Delivery systems for food applications: an overview of preparation methods and encapsulation, release, and dispersion properties. In Book: Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients. 2015 Apr 24:91-111. [ DOI:10.1002/9781118462157.ch6] 56. Khan S, Iqbal R, Khan RS, Khalid N. Bioavailability of nanoencapsulated food bioactives. In Release and Bioavailability of Nanoencapsulated Food Ingredients 2020 Jan 1 (pp. 449-481). Academic Press. [ DOI:10.1016/B978-0-12-815665-0.00012-6] 57. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. International Journal of Nanomedicine. 2013; 8:1721. [ DOI:10.2147/IJN.S40674] 58. Li Z, Wang Y, Pei Y, Xiong W, Zhang C, Xu W, Liu S, Li B. Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Research International. 2015 Sep 1; 75:98-105. [ DOI:10.1016/j.foodres.2015.05.058] 59. Loewen A, Chan B, Li-Chan EC. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage. Food Chemistry. 2018 Feb 1; 240:472-81. [ DOI:10.1016/j.foodchem.2017.07.126] 60. Loewen AJ. Optimizing the loading of vitamin A and vitamin D into re-assembled casein micelles and investigating the effect of micellar complexation on vitamin D stability (Doctoral dissertation, University of British Columbia, 2014). 61. Penalva R, Esparza I, Agüeros M, Gonzalez-Navarro CJ, Gonzalez-Ferrero C, Irache JM. Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocolloids. 2015 Feb 1; 44:399-406. [ DOI:10.1016/j.foodhyd.2014.10.004] 62. Khanji AN, Michaux F, Salameh D, Rizk T, Banon S, Jasniewski J. The study of curcumin interaction with micellar casein and lactic acid bacteria cell envelope. LWT-Food Scinece and Technology. 2018 May 1; 91:293-302. [ DOI:10.1016/j.lwt.2018.01.067] 63. Chakrapani V, Ahmed KB, Kumar VV, Ganapathy V, Anthony SP, Anbazhagan V. A facile route to synthesize casein capped copper nanoparticles: an effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan. RSC Advances. 2014; 4(63):33215-21. [ DOI:10.1039/C4RA03086A] 64. Somu P, Paul S. Bio-conjugation of curcumin with self-assembled casein nanostructure via surface loading enhances its bioactivity: an efficient therapeutic system. Applied Surface Science. 2018 Dec 31; 462:316-29. [ DOI:10.1016/j.apsusc.2018.08.094] 65. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: Formulation, characterization, and in vivo pharmacokinetics. European Journal of Pharmaceutics and Biopharmaceutics. 2013 Aug 1; 84(3):487-96. [ DOI:10.1016/j.ejpb.2013.01.005] 66. Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharmaceutical Research. 2013 Feb; 30(2):512-22. [ DOI:10.1007/s11095-012-0897-z] 67. Singh A, Bajpai J, Bajpai AK. Investigation of magnetically controlled water intake behavior of iron oxide impregnated superparamagnetic casein nanoparticles (IOICNPs). Journal of Nanobiotechnology. 2014 Oct; 12(1):1-3. [ DOI:10.1186/s12951-014-0038-4] 68. Silva JV, Pezennec S, Lortal S, Floury J. Flexibility and charge of solutes as factors that determine their diffusion in casein suspensions and gels. Journal of Agricultural and Food Chemistry. 2015 Jul 29; 63(29):6624-32. [ DOI:10.1021/acs.jafc.5b02401] 69. Pan K, Zhong Q. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties. Soft Matter. 2015; 11(29):5898-904. [ DOI:10.1039/C5SM01037C] 70. Nakagawa K, Kagemoto M. Characterization of casein-based nanoparticles formed upon freezing by in situ SAXS measurement. Colloids and Surfaces B: Biointerfaces. 2013 Mar 1; 103:366-74. [ DOI:10.1016/j.colsurfb.2012.10.052] 71. Inada A, Oue T, Yamashita S, Yamasaki M, Oshima T, Matsuyama H. Development of highly water-dispersible complexes between coenzyme Q10 and protein hydrolysates. European Journal of Pharmaceutical Sciences. 2019 Aug 1; 136:104936. [ DOI:10.1016/j.ejps.2019.05.014] 72. Benzaria A, Maresca M, Taieb N, Dumay E. Interaction of curcumin with phosphocasein micelles processed or not by dynamic high-pressure. Food Chemistry. 2013 Jun 15; 138(4):2327-37. [ DOI:10.1016/j.foodchem.2012.12.017] 73. Blayo C, Marchal S, Lange R, Dumay E. Retinol binding to β-lactoglobulin or phosphocasein micelles under high pressure: Effects of isostatic high-pressure on structural and functional integrity. Food Research International. 2014 Jan 1; 55:324-35. [ DOI:10.1016/j.foodres.2013.11.019] 74. Bahri A, Henriquet C, Pugnière M, Marchesseau S, Chevalier-Lucia D. Binding analysis between monomeric β-casein and hydrophobic bioactive compounds investigated by surface plasmon resonance and fluorescence spectroscopy. Food Chemistry. 2019 Jul 15; 286:289-96. [ DOI:10.1016/j.foodchem.2019.01.176] 75. Crowley SV, Kelly AL, O'Mahony JA, Lucey JA. Colloidal properties of protein complexes formed in β-casein concentrate solutions as influenced by heating and cooling in the presence of different solutes. Colloids and Surfaces B: Biointerfaces. 2019 Feb 1; 174:343-51. [ DOI:10.1016/j.colsurfb.2018.10.067] 76. Razmi M, Divsalar A, Saboury AA, Izadi Z, Haertlé T, Mansuri-Torshizi H. Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids and Surfaces B: Biointerfaces. 2013 Dec 1; 112:362-7. [ DOI:10.1016/j.colsurfb.2013.08.022] 77. Perinelli DR, Bonacucina G, Cespi M, Bonazza F, Palmieri GF, Pucciarelli S, Polzonetti V, Attarian L, Polidori P, Vincenzetti S. A comparison among β-caseins purified from milk of different species: Self-assembling behaviour and immunogenicity potential. Colloids and Surfaces B: Biointerfaces. 2019 Jan 1; 173:210-6. [ DOI:10.1016/j.colsurfb.2018.09.079] 78. Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi AA. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends in Food Science & Technology. 2017 Apr 1; 62:49-58. [ DOI:10.1016/j.tifs.2017.02.004] 79. Kimpel F, Schmitt JJ. Milk proteins as nanocarrier systems for hydrophobic nutraceuticals. Journal of Food Science. 2015 Nov; 80(11):R2361-6. [ DOI:10.1111/1750-3841.13096] 80. Tavares GM, Croguennec T, Carvalho AF, Bouhallab S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends in Food Science & Technology. 2014 May 1; 37(1):5-20. [ DOI:10.1016/j.tifs.2014.02.008] 81. Li HX, Zhang HL, Zhang N, Wang N, Yang Y, Zhang ZZ. Isolation of three curcuminoids for stability and simultaneous determination of only using one single standard substance in turmeric colour principles by HPLC with ternary gradient system. LWT-Food Science and Technology. 2014 Jun 1; 57(1):446-51. [ DOI:10.1016/j.lwt.2013.11.020] 82. Ghayour N, Hosseini SM, Eskandari MH, Esteghlal S, Nekoei AR, Gahruie HH, Tatar M, Naghibalhossaini F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocolloids. 2019 Feb 1; 87:394-403. [ DOI:10.1016/j.foodhyd.2018.08.031] 83. Semenova MG, Antipova AS, Belyakova LE, Polikarpov YN, Anokhina MS, Grigorovich NV, Moiseenko DV. Structural and thermodynamic properties underlying the novel functionality of sodium caseinate as delivery nanovehicle for biologically active lipids. Food Hydrocolloids. 2014 Dec 15; 42:149-61. [ DOI:10.1016/j.foodhyd.2014.03.028] 84. Semenova MG, Anokhina MS, Antipova AS, Belyakova LE, Polikarpov YN. Effect of calcium ions on both the co-assembly of αs-casein with soy phosphatidylcholine and the novel functionality of their complex particles. Food Hydrocolloids. 2014 Jan 1; 34:22-33. [ DOI:10.1016/j.foodhyd.2013.03.018] 85. Chang C, Wang T, Hu Q, Zhou M, Xue J, Luo Y. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocolloids. 2017 Sep 1; 70:143-51. [ DOI:10.1016/j.foodhyd.2017.03.033] 86. Semenova MG, Zelikina DV, Antipova AS, Martirosova EI, Grigorovich NV, Obushaeva RA, Shumilina EA, Ozerova NS, Palmina NP, Maltseva EL, Kasparov VV. Impact of the structure of polyunsaturated soy phospholipids on the structural parameters and functionality of their complexes with covalent conjugates combining sodium caseinate with maltodextrins. Food Hydrocolloids. 2016 Jan 1; 52:144-60. [ DOI:10.1016/j.foodhyd.2015.06.011] 87. Hu K, Huang X, Gao Y, Huang X, Xiao H, McClements DJ. Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles. Food Chemistry. 2015 Sep 1; 182:275-81. [ DOI:10.1016/j.foodchem.2015.03.009] 88. Liu Q, Jing Y, Han C, Zhang H, Tian Y. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocolloids. 2019 Aug 1; 93:432-42. [ DOI:10.1016/j.foodhyd.2019.02.003] 89. Pan K, Zhong Q, Baek SJ. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. Journal of Agricultural and Food Chemistry. 2013 Jun 26; 61(25):6036-43. [ DOI:10.1021/jf400752a] 90. Khlibsuwan R, Khunkitti W, Pongjanyakul T. Alginate-caseinate composites: Molecular interactions and characterization of cross-linked beads for the delivery of anticandidals. International Journal of Biological Macromolecules. 2018 Aug 1; 115:483-93. [ DOI:10.1016/j.ijbiomac.2018.04.095] 91. Qu Y, Harte FM, Elias RJ, Coupland JN. Effect of ethanol on the solubilization of hydrophobic molecules by sodium caseinate. Food Hydrocolloids. 2018 Apr 1; 77:454-9. [ DOI:10.1016/j.foodhyd.2017.10.022] 92. Gupta C, Arora S, Syama MA, Sharma A. Physicochemical characterization of native and modified sodium caseinate-Vitamin A complexes. Food Research International. 2018 Apr 1; 106:964-73. [ DOI:10.1016/j.foodres.2018.02.004] 93. Liang H, Zhou B, He L, An Y, Lin L, Li Y, Liu S, Chen Y, Li B. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Advances. 2015; 5(18):13891-900. [ DOI:10.1039/C4RA14270E] 94. Vellido-Péreza JA, Rodríguez-Remachoa C, Rodríguez-Rodrígueza J, Ochando-Pulidoa JM, Brito-de la Fuenteb E, Martínez-Féreza A. Optimization of oleogel formulation for curcumin vehiculization and lipid oxidation stability by multi-response surface methodology. Chemical Engineering. 2019 Mar 21; 75:427-432. 95. Pan Y, Xie QT, Zhu J, Li XM, Meng R, Zhang B, Chen HQ, Jin ZY. Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Food Chemistry. 2019 Jul 30; 287:76-84. [ DOI:10.1016/j.foodchem.2019.02.047] 96. Rao PJ, Khanum H. A green chemistry approach for nanoencapsulation of bioactive compound-Curcumin. LWT-Food Science and Technology. 2016 Jan 1; 65:695-702. [ DOI:10.1016/j.lwt.2015.08.070] 97. Acevedo-Fani A, Dave A, Singh H. Nature-assembled structures for delivery of bioactive compounds and their potential in functional foods. Frontiers in Chemistry. 2020 Aug 12; 8(9):1-22. [ DOI:10.3389/fchem.2020.564021] 98. Shahgholian N, Rajabzadeh G. Preparation of BSA nanoparticles and its binary compounds via ultrasonic piezoelectric oscillator for curcumin encapsulation. Journal of Drug Delivery Science and Technology. 2019 Dec 1; 54:101323. [ DOI:10.1016/j.jddst.2019.101323] 99. Mohammadian M, Salami M, Momen S, Alavi F, Emam-Djomeh Z. Fabrication of curcumin-loaded whey protein microgels: Structural properties, antioxidant activity, and in vitro release behavior. LWT-Food Science and Technology. 2019 Apr 1; 103:94-100. [ DOI:10.1016/j.lwt.2018.12.076] 100. Silva CE, Hudson EA, Agudelo ÁJ, da Silva LH, Pinto MS, do Carmo Hespanhol M, Barros FA, dos Santos Pires AC. β-Carotene and milk protein complexation: A thermodynamic approach and a photo stabilization study. Food and Bioprocess Technology. 2018 Mar; 11(3):610-20. [ DOI:10.1007/s11947-017-2028-7] 101. Mohamed SA, El-Shishtawy RM, Al-Bar OA, Al-Najada AR. Chemical modification of curcumin: Solubility and antioxidant capacity. International Journal of Food Properties. 2017 Mar 4; 20(3):718-24. [ DOI:10.1080/10942912.2016.1177545] 102. Yang M, Wu Y, Li J, Zhou H, Wang X. Binding of curcumin with bovine serum albumin in the presence of ι-carrageenan and implications on the stability and antioxidant activity of curcumin. Journal of Agricultural and Food Chemistry. 2013 Jul 24; 61(29):7150-5. [ DOI:10.1021/jf401827x] 103. Nadi MM, Ashrafi Kooshk MR, Mansouri K, Ghadami SA, Amani M, Ghobadi S, Khodarahmi R. Comparative spectroscopic studies on curcumin stabilization by association to bovine serum albumin and casein: a perspective on drug-delivery application. International Journal of Food Properties. 2015 Mar 4; 18(3):638-59. [ DOI:10.1080/10942912.2013.853185] 104. Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum Arabic coacervate. Food Hydrocolloids. 2016 Aug 1; 59:17-25. [ DOI:10.1016/j.foodhyd.2015.11.031] 105. Esfanjani AF, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces. 2016 Oct 1; 146:532-43. [ DOI:10.1016/j.colsurfb.2016.06.053] 106. Stanciu MC, Nichifor M, Mocanu G, Tuchilus C, Ailiesei GL. Block copolymers containing dextran and deoxycholic acid polyesters. Synthesis, self-assembly and hydrophobic drug encapsulation. Carbohydrate Polymers. 2019 Nov 1; 223:115118. [ DOI:10.1016/j.carbpol.2019.115118] 107. Lin Q, Liang R, Zhong F, Ye A, Hemar Y, Yang Z, Singh H. Self-assembled micelles based on OSA-modified starches for enhancing solubility of β-carotene: effect of starch macromolecular architecture. Journal of Agricultural and Food Chemistry. 2019 May 22; 67(23):6614-24. [ DOI:10.1021/acs.jafc.9b00355] 108. Tsai S, Ting Y. Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray: a novel and versatile approach. Food Research International. 2019 Feb 1; 116:1163-72. [ DOI:10.1016/j.foodres.2018.11.047] 109. Liu J, Li J, Ma Y, Chen F, Zhao G. Synthesis, characterization, and aqueous self-assembly of octenylsuccinate oat β-glucan. Journal of Agricultural and Food Chemistry. 2013 Dec 26;61(51):12683-91. [ DOI:10.1021/jf4035354] 110. Liu J, Lei L, Ye F, Zhou Y, Younis HG, Zhao G. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability. Food & Function. 2018; 9(1):491-501. [ DOI:10.1039/C7FO01569K] 111. Liu J, Chen F, Tian W, Ma Y, Li J, Zhao G. Optimization and characterization of curcumin loaded in octenylsuccinate oat β-glucan micelles with an emphasis on degree of substitution and molecular weight. Journal of Agricultural and Food Chemistry. 2014 Jul 30; 62(30):7532-40. [ DOI:10.1021/jf5014692] 112. Sayanjali S, Sanguansri L, Buckow R, Gras S, Augustin MA. Oat fiber as a carrier for curcuminoids. Journal of Agricultural and Food Chemistry. 2014 Dec 17; 62(50):12172-7. [ DOI:10.1021/jf504202w] 113. Razi MA, Wakabayashi R, Tahara Y, Goto M, Kamiya N. Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids and Surfaces B: Biointerfaces. 2018 Apr 1; 164:308-15. [ DOI:10.1016/j.colsurfb.2018.01.041] 114. Wang S, Ye F, Wei F, Zhao G. Spray-drying of curcumin-loaded octenylsuccinated corn dextrin micelles stabilized with maltodextrin. Powder Technology. 2017 Feb 1; 307:56-62. [ DOI:10.1016/j.powtec.2016.11.018] 115. Xu W, Jin W, Zhang C, Li Z, Lin L, Huang Q, Ye S, Li B. Curcumin loaded and protective system based on complex of κ-carrageenan and lysozyme. Food Research International. 2014 May 1; 59:61-6. [ DOI:10.1016/j.foodres.2014.01.059] 116. Liu LL, Liu PZ, Li XT, Zhang N, Tang CH. Novel soy β-conglycinin core-shell nanoparticles as outstanding ecofriendly nanocarriers for curcumin. Journal of Agricultural and Food Chemistry. 2019 May 22; 67(22):6292-301. [ DOI:10.1021/acs.jafc.8b05822] 117. Lee CH, Nalluri LP, Popuri SR. Optimization studies for encapsulation and controlled release of curcumin drug using Zn+ 2 cross-linked alginate and carboxy methylcellulose blend. Journal of Polymer Research. 2019 Jan; 26(1):1-7. [ DOI:10.1007/s10965-018-1667-3] 118. Harada T, Giorgio L, Harris TJ, Pham DT, Ngo HT, Need EF, Coventry BJ, Lincoln SF, Easton CJ, Buchanan G, Kee TW. Diamide linked γ-cyclodextrin dimers as molecular-scale delivery systems for the medicinal pigment curcumin to prostate cancer cells. Molecular Pharmaceutics. 2013 Dec 2; 10(12):4481-90. [ DOI:10.1021/mp400309s] 119. Liu Y, Ying D, Cai Y, Le X. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids. 2017 Nov 1; 72:304-11. [ DOI:10.1016/j.foodhyd.2017.06.007] 120. Liu Y, Cai Y, Ying D, Fu Y, Xiong Y, Le X. Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. International Journal of Biological Macromolecules. 2018 Sep 1; 116:893-900. [ DOI:10.1016/j.ijbiomac.2018.05.089] 121. Meng R, Wu Z, Xie HQ, Xu GX, Cheng JS, Zhang B. Preparation, characterization, and encapsulation capability of the hydrogel cross-linked by esterified tapioca starch. International Journal of Biological Macromolecules. 2020 Jul 15; 155:1-5. [ DOI:10.1016/j.ijbiomac.2020.03.141] 122. Alavi F, Emam-Djomeh Z, Yarmand MS, Salami M, Momen S, Moosavi-Movahedi AA. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids. 2018 Dec 1; 85:267-80. [ DOI:10.1016/j.foodhyd.2018.07.012] 123. Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics. 2017 Apr 30; 522(1-2):172-97. [ DOI:10.1016/j.ijpharm.2017.01.067] 124. Yang T, Yang H, Fan Y, Li B, Hou H. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin. International Journal of Biological Macromolecules. 2018 Oct 15; 118:124-31. [ DOI:10.1016/j.ijbiomac.2018.06.058] 125. Hassanin IA, Elzoghby AO. Self-assembled non-covalent protein-drug nanoparticles: an emerging delivery platform for anti-cancer drugs. Expert Opinion on Drug Delivery. 2020 Oct 2; 17(10):1437-58. [ DOI:10.1080/17425247.2020.1813713] 126. Cosme P, Rodríguez AB, Espino J, Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants. 2020 Dec; 9(12):1263. [ DOI:10.3390/antiox9121263] 127. Malekhosseini P, Alami M, Khomeiri M, Esteghlal S, Nekoei AR, Hosseini SM. Development of casein‐based nanoencapsulation systems for delivery of epigallocatechin gallate and folic acid. Food Science & Nutrition. 2019 Feb; 7(2):519-27. [ DOI:10.1002/fsn3.827] 128. Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. Journal of Controlled Release. 2012 Jul 10; 161(1):38-49. [ DOI:10.1016/j.jconrel.2012.04.036] 129. Wani TA, Shah AG, Wani SM, Wani IA, Masoodi FA, Nissar N, Shagoo MA. Suitability of different food grade materials for the encapsulation of some functional foods well reported for their advantages and susceptibility. Critical Reviews in Food Science and Nutrition. 2016 Nov 17; 56(15):2431-54. [ DOI:10.1080/10408398.2013.845814] 130. Somu P, Paul S. A biomolecule-assisted one-pot synthesis of zinc oxide nanoparticles and its bioconjugate with curcumin for potential multifaceted therapeutic applications. New Journal of Chemistry. 2019; 43(30):11934-48. [ DOI:10.1039/C9NJ02501D] 131. Li W, Li S, Hu Y, Zhou M, Wang C, Li D, Li D. Impact of hot alkali modification conditions on secondary structure of peanut protein and embedding rate of curcumin. Food Science and Human Wellness. 2019 Sep 1; 8(3):283-91. [ DOI:10.1016/j.fshw.2019.05.004] 132. Kadam D, Palamthodi S, Lele SS. Complexation of curcumin with Lepidium sativum protein hydrolysate as a novel curcumin delivery system. Food Chemistry. 2019 Nov 15; 298:125091. [ DOI:10.1016/j.foodchem.2019.125091] 133. McClements DJ. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances. 2020 Jan 1; 38:107287. [ DOI:10.1016/j.biotechadv.2018.08.004] 134. Deng XX, Zhang N, Tang CH. Soy protein isolate as a nanocarrier for enhanced water dispersibility, stability and bioaccessibility of β‐carotene. Journal of the Science of Food and Agriculture. 2017 May; 97(7):2230-7. [ DOI:10.1002/jsfa.8033] 135. Ucisik MH, Küpcü S, Schuster B, Sleytr UB. Characterization of curcuemulsomes: Nanoformulation for enhanced solubility anddelivery of curcumin. Journal of Nanobiotechnology. 2013 Dec; 11(1):1-3. [ DOI:10.1186/1477-3155-11-37] 136. Thongnopkoon T, Chittasupho C. Curcumin composite particles prepared by spray drying and in vitro anti-cancer activity on lung cancer cell line. Journal of Drug Delivery Science and Technology. 2018 Jun 1; 45:397-407. [ DOI:10.1016/j.jddst.2018.04.006] 137. Okagu OD, Verma O, McClements DJ, Udenigwe CC. Utilization of insect proteins to formulate nutraceutical delivery systems: Encapsulation and release of curcumin using mealworm protein-chitosan nano-complexes. International Journal of Biological Macromolecules. 2020 May 15; 151:333-43. [ DOI:10.1016/j.ijbiomac.2020.02.198] 138. Sanduk F, Meng Y, Widera D, Kowalczyk RM, Michael N, Kaur A, Yip V, Zulu S, Zavrou I, Hana L, Yaqoob M. Enhanced anti-inflammatory potential of degradation resistant curcumin/ferulic acid eutectics embedded in triglyceride-based microemulsions. Journal of Drug Delivery Science and Technology. 2020 Dec 1; 60:102067. [ DOI:10.1016/j.jddst.2020.102067] 139. Wang F, Yang Y, Ju X, Udenigwe CC, He R. Polyelectrolyte complex nanoparticles from chitosan and acylated rapeseed cruciferin protein for curcumin delivery. Journal of Agricultural and Food Chemistry. 2018 Feb 16; 66(11):2685-93. [ DOI:10.1021/acs.jafc.7b05083] 140. Yan JK, Qiu WY, Wang YY, Wu JY. Biocompatible polyelectrolyte complex nanoparticles from lactoferrin and pectin as potential vehicles for antioxidative curcumin. Journal of Agricultural and Food Chemistry. 2017 Jul 19; 65(28):5720-30. [ DOI:10.1021/acs.jafc.7b01848] 141. Chen FP, Ou SY, Tang CH. Core-shell soy protein-soy polysaccharide complex (nano) particles as carriers for improved stability and sustained release of curcumin. Journal of Agricultural and Food Chemistry. 2016 Jun 22; 64(24):5053-9. [ DOI:10.1021/acs.jafc.6b01176] 142. Chen S, Zhang N, Tang CH. Influence of nanocomplexation with curcumin on emulsifying properties and emulsion oxidative stability of soy protein isolate at pH 3.0 and 7.0. Food Hydrocolloids. 2016 Dec 1; 61:102-12. [ DOI:10.1016/j.foodhyd.2016.04.048] 143. Kumar V, Kumar B, Deeba F, Bano S, Kulshreshtha A, Gopinath P, Negi YS. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. International Journal of Biological Macromolecules. 2019 May 1; 128:204-13. [ DOI:10.1016/j.ijbiomac.2019.01.101] 144. Mathew MS, Vinod K, Jayaram PS, Jayasree RS, Joseph K. Improved bioavailability of curcumin in gliadin-protected gold quantum cluster for targeted delivery. ACS Omega. 2019 Aug 20;4(10):14169-78. [ DOI:10.1021/acsomega.9b00917] 145. Wang X, Gao Y. Effects of length and unsaturation of the alkyl chain on the hydrophobic binding of curcumin with Tween micelles. Food Chemistry. 2018 Apr 25; 246:242-8. [ DOI:10.1016/j.foodchem.2017.11.024] 146. Wang C, Yang Y, Cui X, Ding S, Chen Z. Three different types of solubilization of thymol in Tween 80: Micelles, solutions, and emulsions-a mechanism study of micellar solubilization. Journal of Molecular Liquids. 2020 May 15; 306:112901. [ DOI:10.1016/j.molliq.2020.112901] 147. Weng Q, Cai X, Zhang F, Wang S. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Food Chemistry. 2019 Feb 15; 274:796-802. [ DOI:10.1016/j.foodchem.2018.09.059] 148. Cid A, Morales J, Mejuto JC, Briz-Cid N, Rial-Otero R, Simal-Gandara J. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest. Food Chemistry. 2014 May 15; 151:358-63. [ DOI:10.1016/j.foodchem.2013.11.076] 149. Loquercio AS. Preparation and Characterization of Chitosan-Alginate Nanoparticles for Trans-Cinnamaldehyde Entrapment (Doctoral dissertation, Texas A&M University,2014). 150. Dende C, Meena J, Nagarajan P, Nagaraj VA, Panda AK, Padmanaban G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Scientific Reports. 2017 Aug 30; 7(1):1-2. [ DOI:10.1038/s41598-017-10672-9] 151. Raynes JK, Carver JA, Gras SL, Gerrard JA. Protein nanostructures in food-Should we be worried? Trends in Food Science & Technology. 2014 May 1; 37(1):42-50. [ DOI:10.1016/j.tifs.2014.02.003] 152. Wikene KO, Bruzell E, Tønnesen HH. Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents. European Journal of Pharmaceutical Sciences. 2015 Dec 1; 80:26-32. [ DOI:10.1016/j.ejps.2015.09.013] 153. Zheng B, Peng S, Zhang X, McClements DJ. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. Journal of Agricultural and Food Chemistry. 2018 Sep 25; 66(41):10816-26. [ DOI:10.1021/acs.jafc.8b03174] 154. Sharma P, Segat A, Kelly AL, Sheehan JJ. Colorants in cheese manufacture: Production, chemistry, interactions, and regulation. Comprehensive Reviews in Food Science and Food Safety. 2020 Jul; 19(4):1220-42. [ DOI:10.1111/1541-4337.12519] 155. Serpa Guerra AM, Gómez Hoyos C, Velásquez-Cock JA, Velez Acosta L, Ganan Rojo P, Velasquez Giraldo AM, Zuluaga Gallego R. The nanotech potential of turmeric (Curcuma longa L.) in food technology: A review. Critical Reviews in Food Science and Nutrition. 2020 Jun 16; 60(11):1842-54. [ DOI:10.1080/10408398.2019.1604490] 156. Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules. 2021 Jan; 26(24):7658. [ DOI:10.3390/molecules26247658] 157. Mazaheri M, Moosavi-Movahedi AA, Rahban M. Curcumin, the miracle of nature: the active ingredient of turmeric. Tehran : Tehran University. Press; 2021 [in Persian].
|