[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
this is a test
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
Subscription::
Contact us::
Site Facilities::
Webmail::
Ethical Consideration::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 19, Issue 4 (Winter 2025) ::
Iranian J Nutr Sci Food Technol 2025, 19(4): 65-76 Back to browse issues page
Purification of Anghoze Oleo-gum (Ferula assafoetida) to Produce Antimicrobial Nanofibers Using Electrospinning Technique
S Jafari , Abdollah Hematian Sourki * , S Pashangeh
Jahrom university , a.hematian@jahromu.ac.ir
Abstract:   (113 Views)
Background and Objectives: The aim of this study was to purify the water-soluble fraction of Ferula assafoetida gum, investigate its antimicrobial characteristics and explore its potential for use in producing biodegradable coatings through the electrospinning technique. Gum extracted from Ferula assafoetida root shows antifungal, antidiabetic, anticancer, anti-inflammatory and antiviral activities, containing compounds such as sugars, coumarins and polysulfides. This study investigated antimicrobial characteristics of the purified gum and its nanofibers against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and food spoilage-causing molds (Aspergillus niger).
 Materials & Methods: After verifying presence of bioactive compounds through gas chromatography-mass spectrometry (GC-MS) and validating antimicrobial characteristics of the purified gum using disc diffusion method, nanofibers of Ferula assafoetida gum and polyethylene oxide (PEO) were prepared via electrospinning. Antimicrobial effects of the nanofibers were assessed. Two-percent polyethylene oxide was added to the Ferula assafoetida gum solution as a co-spinning agent to facilitate the electrospinning process.
Results: Scanning electron microscopy images showed that the electrospinning process of the purified gum and PEO mixture was successful, producing uniform nanofibers with an average diameter of 482 nm. The highest antimicrobial activity of the Ferula assafoetida gum-PEO nanofibers was observed against Aspergillus niger with an inhibition zone diameter of 20.67 mm in disc diffusion assessment. Results demonstrated that purified Ferula assafoetida gum alone was not electrospinnable and PEO was needed as a co-spinning agent to produce antimicrobial nanofibers. The disc diffusion assessment showed that the F. assafoetida gum-PEO nanofibers included significant antimicrobial activities against the target microorganisms.
Conclusion: Pure Ferula assafoetida gum, as a biodegradable polymer with strong antimicrobial characteristics, can be used as a hydrocolloid component in production of biodegradable and active edible coatings and packaging.
Keywords: Polyethylene oxide, Anti-fungal characteristics, Disc diffusion, Electrohydrodynamic, Native oleo-gum
Full-Text [PDF 867 kb]   (77 Downloads)    
Article type: Research | Subject: Food Science
Received: 2024/06/23 | Accepted: 2024/10/29 | Published: 2025/01/5
References
1. Amorim, L.F., C. Mouro, and I.C. Gouveia, Electrospun fiber materials based on polysaccharides and natural colorants for food packaging applications. Cellulose, 2024: p. 1-27. [DOI:10.1007/s10570-024-05956-z]
2. Tanavar, H., H. Barzegar, B. Alizadeh Behbahani, and M.A. Mehrnia, Investigation of the chemical properties of Mentha pulegium essential oil and its application in Ocimum basilicum seed mucilage edible coating for extending the quality and shelf life of veal stored in refrigerator (4 C). Food Science & Nutrition, 2021. 9(10): p. 5600-5615. [DOI:10.1002/fsn3.2522]
3. Iranshahy, M, M. Iranshahi, Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-A review. Journal of ethnopharmacology, 2011. 134(1): p. 1-10. [DOI:10.1016/j.jep.2010.11.067]
4. Zonouzi, A., M. Auli, M.J. Dakheli, and M. Hejazi, Oil extraction from microalgae Dunalliela sp. By polar and non-polar solvents. International journal of agricultural and biosystems Engineering, 2016. 10(10): p. 642-645.
5. Xiong, K. and Y. Chen, Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chemical Engineering Research and Design, 2020. 164: p. 412-423. [DOI:10.1016/j.cherd.2020.09.032]
6. Cheng, Y., F. Xue, S. Yu, S. Du, and Y. Yang, Subcritical water extraction of natural products. Molecules, 2021. 26(13): p. 4004. [DOI:10.3390/molecules26134004]
7. Hematian Sourki, A., A. Koocheki, and M. Elahi, Ultrasound-assisted extraction of β-d-glucan from hull-less barley: Assessment of physicochemical and functional properties. International Journal of Biological Macromolecules, 2017. 95: p. 462-475. [DOI:10.1016/j.ijbiomac.2016.10.111]
8. Drinić, Z., D. Pljevljakušić, J. Živković, D. Bigović, and K. Šavikin, Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation. Food and Bioproducts Processing, 2020. 120: p. 158-165. [DOI:10.1016/j.fbp.2020.01.011]
9. De Aguiar Saldanha Pinheiro, A.C., F.J. Martí-Quijal, F.J. Barba, S. Tappi, and P. Rocculi, Innovative non-thermal technologies for recovery and valorization of value-added products from crustacean processing by-products-An opportunity for a circular economy approach. Foods, 2021. 10(9): p. 2030. [DOI:10.3390/foods10092030]
10. Saeidy, S., A. Nasirpour, J. Keramat, J. Desbrières, D. Le Cerf, G. Pierre, et al., Structural characterization and thermal behavior of a gum extracted from Ferula assa foetida L. Carbohydrate polymers, 2018. 181: p. 426-432. [DOI:10.1016/j.carbpol.2017.10.096]
11. Arjmand, Z. and D. Dastan, Chemical characterization and biological activity of essential oils from the aerial part and root of Ferula haussknechtii. Flavour and fragrance journal, 2020. 35(1): p. 114-123. [DOI:10.1002/ffj.3544]
12. Bhushani, J.A. and C. Anandharamakrishnan, Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 2014. 38(1): p. 21-33. [DOI:10.1016/j.tifs.2014.03.004]
13. Gagaoua, M., V.Z. Pinto, G. Göksen, L. Alessandroni, M. Lamri, A.L. Dib, et al., Electrospinning as a promising process to preserve the quality and safety of meat and meat products. Coatings, 2022. 12(5): p. 644. [DOI:10.3390/coatings12050644]
14. Tavana, F., A. Hematian Sourki, and M.-T. Golmakani, Fabrication and characterization of bio-nanocomposites based on kafirin and polyethylene oxide as auxiliary polymer: Process optimization, rheological, morphological and thermal properties. Journal of Food Science and Technology, 2023. 60(11): p. 2881-2892. [DOI:10.1007/s13197-023-05805-0]
15. Zaitoon, A. and L.-T. Lim, Effect of poly (ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose composite fibers. Materialia, 2020. 10: p. 100649. [DOI:10.1016/j.mtla.2020.100649]
16. Honarbakhsh, S. and B. Pourdeyhimi, Scaffolds for drug delivery, part I: electrospun porous poly (lactic acid) and poly (lactic acid)/poly (ethylene oxide) hybrid scaffolds. Journal of materials science, 2011. 46: p. 2874-2881. [DOI:10.1007/s10853-010-5161-5]
17. Alborzi, S., L.-T. Lim, and Y. Kakuda, Encapsulation of folic acid and its stability in sodium alginate-pectin-poly (ethylene oxide) electrospun fibres. Journal of microencapsulation, 2013. 30(1): p. 64-71. [DOI:10.3109/02652048.2012.696153]
18. Xu, X., L. Jiang, Z. Zhou, X. Wu, and Y. Wang, Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS applied materials & interfaces, 2012. 4(8): p. 4331-4337. [DOI:10.1021/am300991e]
19. Colin-Orozco, J., M. Zapata-Torres, G. Rodriguez-Gattorno, and R. Pedroza-Islas, Properties of poly (ethylene oxide)/whey protein isolate nanofibers prepared by electrospinning. Food Biophysics, 2015. 10: p. 134-144. [DOI:10.1007/s11483-014-9372-1]
20. Moreira, J.B., L.-T. Lim, E. da Rosa Zavareze, A.R.G. Dias, J.A.V. Costa, and M.G. de Morais, Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocolloids, 2019. 93: p. 131-136. [DOI:10.1016/j.foodhyd.2019.02.015]
21. Lu, J.-W., Y.-L. Zhu, Z.-X. Guo, P. Hu, and J. Yu, Electrospinning of sodium alginate with poly(ethylene oxide). Polymer, 2006. 47(23): p. 8026-8031. [DOI:10.1016/j.polymer.2006.09.027]
22. Taokaew, S. and T. Chuenkaek, Developments of Core/Shell chitosan-based nanofibers by electrospinning techniques: a review. Fibers, 2024. 12(3): p. 26. [DOI:10.3390/fib12030026]
23. Tajfiroozeh, F., A. Moradi, F. Shahidi, J. Movaffagh, H. Kamali, S. Roshanak, et al., Fabrication and characterization of gallic-acid/nisin loaded electrospun core/shell chitosan/polyethylene oxide nanofiberous membranes with free radical scavenging capacity and antimicrobial activity for food packing applications. Food Bioscience, 2023. 53: p. 102529. [DOI:10.1016/j.fbio.2023.102529]
24. Ayoubi, A.R., R. Valizadeh, J. Arshami, and Z. Mousavi, The effect of water-alcholic extracted gum of ferula asafoetida on body and testes weight, testosterone and spermatogenesis in adult male wistar rat. Iranian Journal of Animal Science Research, 2014. 6(2): p. -.
25. Tabatabaei Yazdi, F., B. Alizadeh Behbahani, and H. Zanganeh, The comparison among antibacterial activity of Mespilus germanica extracts and number of common therapeutic antibiotics "in vitro". Zahedan Journal of Research in Medical Sciences, 2015. 17(12): p. 1-6. [DOI:10.17795/zjrms-5190]
26. Li, M., H. Yu, Y. Xie, Y. Guo, Y. Cheng, H. Qian, et al., Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material. Lwt, 2021. 139: p. 110800. [DOI:10.1016/j.lwt.2020.110800]
27. Rehman, W., S. Haq, F. Rahim, S. Khan, M. Waseem, M. Nawaz, et al., Synthesis, Characterization and Antibacterial Screening of Diorganotin(IV) Complexes Derived From 2-[(4-Dimethylamino-Benzylidene)Amino]Phenol. Pharmaceutical Chemistry Journal, 2017. 51(2): p. 115-118. [DOI:10.1007/s11094-017-1567-6]
28. Sharma, V., N. Chitranshi, and A.K. Agarwal, Significance and biological importance of pyrimidine in the microbial world. International journal of medicinal chemistry, 2014. 2014(1): p. 202784. [DOI:10.1155/2014/202784]
29. Kabotso, D.E., D. Neglo, P. Kwashie, I.A. Agbo, and D.A. Abaye, GC/MS Composition and Resistance Modulatory Inhibitory Activities of Three Extracts of Lemongrass: Citral Modulates the Activities of Five Antibiotics at Sub‐Inhibitory Concentrations on Methicillin‐Resistant Staphylococcus aureus. Chemistry & Biodiversity, 2022. 19(9): p. e202200296. [DOI:10.1002/cbdv.202200296]
30. Saadatfar, A., S.H. Jafari, and I. Tavassolian, Improving biochemical traits, oleo-gum yield and compositions of asafoetida (Ferula assa-foetida L.) essential oil using 24-epibrassinolide in Kerman natural habitats (Iran). Journal of Medicinal Plants, 2021. 20: p. 93-107. [DOI:10.52547/jmp.20.77.93]
31. Zare, A., M. Omidi, H.F. Hoseini, D. Yazdani, S. Rezazadeh, N. Irvani, et al., A review on pharmacological effects of Ferula assa-foetida L.: a systematic review. Journal of Medicinal Plants, 2011. 10(40): p. 17-25.
32. Dehpour Joybari, A.A., Identification of components of essential oils and antibacterial activity of ethanolic extract of Anghouzeh plant. Biotechnology and Applied Microbiology journal, 2013. 2(3): p. 33-40.
33. Jafari, A., H. Jafari, A. Deghanbanadkoki, and M. Baghbanian, Antifungal Activity of Aqueous Extracts from Ferula Assa foetida Aerial parts on Candida Albicans and its Comparison with Fluconazole in vitro. Tolooebehdasht, 2014. 13(3): p. 171-181.
34. Bayat, Z., N. Mollania, M. R. Vaezi-Kakhki, and M. Kheirabadi, Evaluation of the Antibacterial Activity of Aqueous Extracts of Artemisia vulgaris L. , Ziziphora persica Bunge, Ferula assa-foetida L. on Staphylococcus aureus and Escherichia coli, in 19th National and 7th International Congress on Biology. 2016: Tabriz, Iran.
35. Jahani, S., M. Salehi, A. Shakiba, A. Moradipour, and F. Forouzandeh, Production and study of antioxidant and antibacterial activities of gelatin nano-capsules containing Ferula assa-foetida essential oil. J. Arak Uni. Med. Sci, 2015. 18(5): p. 33-48.
36. Dehghan, G., G. Zarini, and M. Hajizadeh, Phytochemical investigation and antibacterial, antifungal and synergistic effects of chloroform fractions of desert coma plant root extract. Journal of Shahrekord University of Medical Sciences, 2014. 15(6): p. 10-17.
37. Asili, J., A. Sahebkar, B.S. Fazly Bazzaz, S. Sharifi, and M. Iranshahi, Identification of Essential Oil Components of Ferula badrakema Fruits by GC-MS and 13C-NMR Methods and Evaluation of its Antimicrobial Activity. Journal of Essential Oil Bearing Plants, 2009. 12(1): p. 7-15. [DOI:10.1080/0972060X.2009.10643685]
38. Bubonja-Šonje, M., S. Knežević, and M. Abram, Challenges to antimicrobial susceptibility testing of plantderived polyphenolic compounds. Arhiv za higijenu rada i toksikologiju, 2020. 71(4): p. 300-311. [DOI:10.2478/aiht-2020-71-3396]
39. Alizadeh Behbahani, B., F. Tabatabaei Yazdi, H. Noorbakhsh, F. Riazi, A. Jajarmi, and F. Tabatabaei Yazdi, Study of the antibacterial activity of methanolic and aqueous extracts of Myrtus communis on pathogenic strains causing infection. Zahedan Journal of Research in Medical Sciences, 2016. 18(2). [DOI:10.17795/zjrms-5989]
40. An, J., H. Zhang, J. Zhang, Y. Zhao, and X. Yuan, Preparation and antibacterial activity of electrospun chitosan/poly (ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 2009. 287: p. 1425-1434. [DOI:10.1007/s00396-009-2108-y]
41. Wei Yu, J.G., Yuanyuan Liu, Xiaoge Xue, Xiangru Wang, Lili Wei , Lei Mao , Zhihao Zhang, Yiming Zhuo, Shuixin Li, Jiage Ma, Dong Xu, Fabrication of novel electrospun zein/polyethylene oxide film incorporating nisin for antimicrobial packaging. LWT - Food Science and Technology 185 (2023) 115176, 2023. [DOI:10.1016/j.lwt.2023.115176]
42. Fouda, M.M., M. El-Aassar, and S.S. Al-Deyab, Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydrate polymers, 2013. 92(2): p. 1012-1017. [DOI:10.1016/j.carbpol.2012.10.047]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari S, Hematian Sourki A, Pashangeh S. Purification of Anghoze Oleo-gum (Ferula assafoetida) to Produce Antimicrobial Nanofibers Using Electrospinning Technique. Iranian J Nutr Sci Food Technol 2025; 19 (4) :65-76
URL: http://nsft.sbmu.ac.ir/article-1-3883-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 4 (Winter 2025) Back to browse issues page
Iranian Journal of  Nutrition Sciences and Food  Technology
Persian site map - English site map - Created in 0.1 seconds with 37 queries by YEKTAWEB 4660