Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide. Epidemiological evidence indicates an inverse association between the intake of fruit- and vegetable-rich diets, due to their high phenolic acid content, and the incidence of MASLD. Lepidium drabaL. (commonly known as Mocheh) is rich in polyphenolic compounds and may exhibit protective effects against liver injury. This study aimed to investigate the preventive effects of Mocheh extract on the development of MASLD in rats fed a high-fat diet. Materials & Methods: In this experimental study, 24 male rats were randomly assigned to four groups: control (standard diet), MASLD (high-fat diet), M (standard diet + oral gavage of 400 mg/kg Mocheh extract), and MASLD+M (high-fat diet + oral gavage of Mocheh extract). After 12 weeks, biochemical parameters including fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), Low-Density Lipoprotein (LDL), High-Density Lipoprotein cholesterol (HDL), and the activities of Aspartate Transaminase (AST) and Alanine aminoTransferase (ALT) enzymes were measured in serum samples. Additionally, liver tissue samples were analyzed for catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, and malondialdehyde (MDA) levels. Results: Mocheh extract significantly reduced LDL (p = 0/0370), MDA (p = 0/0338) levels, and AST (p= 0/0112) and ALT (p = 0/0153) activities, while significantly enhancing SOD (p = 0/0175) and CAT (p = 0/0165) activities. Histopathological evaluations confirmed reduced oxidative liver damage in the Mocheh-treated groups. Conclusion: Given its notable antioxidant and anti-inflammatory properties—attributable to its phenolic and flavonoid compounds—Mocheh extract may serve as a promising preventive agent against liver injury induced by a high-fat diet.
1. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. Journal of hepatology. 2023;79(2):516-37. [DOI:10.1016/j.jhep.2023.03.017]
2. Nassir F. NAFLD: mechanisms, treatments, and biomarkers. Biomolecules 2022; 12: 824. [DOI:10.3390/biom12060824]
3. Long MT, Noureddin M, Lim JK. AGA clinical practice update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review. Gastroenterology. 2022;163(3):764-74. e1. [DOI:10.1053/j.gastro.2022.06.023]
4. Tabaeian SP, Rezapour A, Azari S, Martini M, Saran M, Behzadifar M, et al. Prevalence of non-alcoholic fatty liver disease in Iran: A systematic review and meta-analysis. Journal of Clinical and Experimental Hepatology. 2024;14(1):101209. [DOI:10.1016/j.jceh.2023.06.009]
5. Fakhri M, Fakheri H, Azadbakht M, Moosazadeh M, Yousefi SS. Effect of medicinal plants and natural products on liver enzymes in non-alcoholic fatty liver patients in Iran: A systematic review and meta-analysis. International Journal of Preventive Medicine. 2022;13(1):87. [DOI:10.4103/ijpvm.IJPVM_313_20]
6. Younossi ZM. Non-alcoholic fatty liver disease-a global public health perspective. Journal of hepatology. 2019;70(3):531-44. [DOI:10.1016/j.jhep.2018.10.033]
7. Kumar R, Priyadarshi RN, Anand U. Non-alcoholic fatty liver disease: growing burden, adverse outcomes and associations. Journal of Clinical and Translational Hepatology. 2020;8(1):76. [DOI:10.14218/JCTH.2019.00051]
8. Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC endocrine disorders. 2022;22(1):63. [DOI:10.1186/s12902-022-00980-1]
9. De Chiara F, Ureta Checcllo C, Ramon Azcon J. High protein diet and metabolic plasticity in non-alcoholic fatty liver disease: myths and truths. Nutrients. 2019;11(12):2985. [DOI:10.3390/nu11122985]
10. Różański G, Tabisz H, Zalewska M, Niemiro W, Kujawski S, Newton J, et al. Meta-analysis of exploring the effect of curcumin supplementation with or without other advice on biochemical and anthropometric parameters in patients with metabolic-associated fatty liver disease (MAFLD). International journal of environmental research and public health. 2023;20(5):4266. [DOI:10.3390/ijerph20054266]
11. Huh Y, Cho YJ, Nam GE. Recent Epidemiology and Risk Factors of Nonalcoholic Fatty Liver Disease. J Obes Metab Syndr. 2022;31(1):17-27. [DOI:10.7570/jomes22021]
12. Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World journal of gastroenterology. 2018;24(19):2083. [DOI:10.3748/wjg.v24.i19.2083]
13. Hall RL, George ES, Tierney AC, Reddy AJ. Effect of Dietary Intervention, with or without Cointerventions, on Inflammatory Markers in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Adv Nutr. 2023;14(3):475-99. [DOI:10.1016/j.advnut.2023.01.001]
14. Abenavoli L, Larussa T, Corea A, Procopio AC, Boccuto L, Dallio M, et al. Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients. 2021;13(2):494. [DOI:10.3390/nu13020494]
15. Eruygur N, Ayaz F, Bağcı Y, Güler E, Çağıl EM. Phenolic composition, in-vitro antioxidant and enzyme inhibition activities of Cardaria draba different parts. Avrupa Bilim ve Teknoloji Dergisi. 2022(35):424-31. [DOI:10.31590/ejosat.1062109]
16. Ouissem BS, Sabrina B, Lotfi B, Khellaf R, Chawki B, Ibrahim D, et al. HPLC analysis and antioxidant properties of algerian Lepidium draba ethyl acetate extract. Journal of Biologically Active Products from Nature. 2018;8(4):265-71. [DOI:10.1080/22311866.2018.1511381]
17. Benakashani F, Allafchian A, Jalali SAH. Green synthesis, characterization and antibacterial activity of silver nanoparticles from root extract of Lepidium draba weed. Green chemistry letters and reviews. 2017;10(4):324-30. [DOI:10.1080/17518253.2017.1363297]
18. Feng J, Gao H, Yang L, Xie Y, El‐Kenawy AE, El‐kott AF. Renoprotective and hepatoprotective activity of Lepidium draba L. extracts on oxymetholone‐induced oxidative stress in rat. Journal of Food Biochemistry. 2022;46(9):e14250. [DOI:10.1111/jfbc.14250]
19. Wang Y, Bai L, Zhang J, Li H, Yang W, Li M. Lepidium draba L. leaves extract ameliorated cyclophosphamide‐induced testicular toxicity by modulation of ROS‐dependent Keap1/Nrf2/HO1, Bax/Bcl2/p53/caspase‐3, and inflammatory signaling pathways. Journal of Food Biochemistry. 2021;45(12):e13987. [DOI:10.1111/jfbc.13987]
20. Ahmed ET, Zawdie B, Nair SKP, Welde M, Husen TM. Evaluation of the Effect of Hydromethanolic Seed Extract of Lepidium sativum L.(Fetto) on Deep-fried Palm Oil Diet Induced Nonalcoholic Fatty Liver Disease on Male Swiss Albino Mice. Hepatic Medicine: Evidence and Research. 2022;14:1. [DOI:10.2147/HMER.S350703]
21. Vornoli A, Vizzarri F, Della Croce CM, Grande T, Palazzo M, Árvay J, et al. The hypolipidemic, anti-inflammatory and antioxidant effect of Kavolì® aqueous extract, a mixture of Brassica oleracea leaves, in a rat model of NAFLD. Food and Chemical Toxicology. 2022;167:113261. [DOI:10.1016/j.fct.2022.113261]
22. Abd‐Elrazek AM, Ibrahim SR, El‐dash HA. The ameliorative effect of Apium graveolens & curcumin against Non-alcoholic fatty liver disease induced by high fructose-high fat diet in rats. Future Journal of Pharmaceutical Sciences. 2022;8(1):26. [DOI:10.1186/s43094-022-00416-6]
23. Wang Y, Bai L, Li H, Yang W, Li M. Protective effects of Lepidium draba L. leaves extract on testis histopathology, oxidative stress indicators, serum reproductive hormones and inflammatory signalling in oxymetholone‐treated rat. Andrologia. 2021;53(11):e14239. [DOI:10.1111/and.14239]
24. Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling diet-induced NAFLD and NASH in rats: a comprehensive review. Biomedicines. 2021;9(4):378. [DOI:10.3390/biomedicines9040378]
25. Velázquez AM, Roglans N, Bentanachs R, Gené M, Sala-Vila A, Lázaro I, et al. Effects of a low dose of caffeine alone or as part of a green coffee extract, in a rat dietary model of lean non-alcoholic fatty liver disease without inflammation. Nutrients. 2020;12(11):3240. [DOI:10.3390/nu12113240]
26. Attia ES, Amer AH, Hasanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Natural product research. 2019;33(6):901-5. [DOI:10.1080/14786419.2017.1413564]
27. Hymel E, Vlock E, Fisher KW, Farazi PA. Differential progression of unhealthy diet-induced hepatocellular carcinoma in obese and non-obese mice. Plos one. 2022;17(8):e0272623. [DOI:10.1371/journal.pone.0272623]
28. Aryaeian N, Alipour R, Karegar SJ, Soleimani M, Hosseini A, Hekmatdoost A. Saffron effects on liver enzymes, antioxidant capacity, insulin, inflammation and genes expression of lipolysis and lipogenesis in a rat model of non-alcoholic fatty liver disease. Clinical Nutrition Open Science. 2024;53:95-107. [DOI:10.1016/j.nutos.2023.12.004]
29. Rezazadeh A, Yazdanparast R, Molaei M. Amelioration of diet-induced nonalcoholic steatohepatitis in rats by Mn-salen complexes via reduction of oxidative stress. Journal of biomedical science. 2012;19:1-8. [DOI:10.1186/1423-0127-19-26]
30. Sadeghi M, Borujeni FE, Ghodsi S, Moshtaghian J. Investigating the Effect of Hydroalcoholic Extract of Descurainia sophia (L.) Webb ex Prantl on Blood Glucose, Biochemistry Parameters, Fatty Profile, and Serology Factor in Diabetic Male Rats. International Journal of Health and Life Sciences. 2021;7(3). [DOI:10.5812/ijhls.115280]
31. Hong T, Chen Y, Li X, Lu Y. The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxidative medicine and cellular longevity. 2021;2021(1):6889533. [DOI:10.1155/2021/6889533]
32. Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomedicine & Pharmacotherapy. 2023;164:114991. [DOI:10.1016/j.biopha.2023.114991]
33. Tuzcu Z, Orhan C, Sahin N, Juturu V, Sahin K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high‐fat diet‐fed rats. Oxidative medicine and cellular longevity. 2017;2017(1):1583098. [DOI:10.1155/2017/1583098]
34. Pozzo L, Russo R, Frassinetti S, Vizzarri F, Árvay J, Vornoli A, et al. Wild Italian Prunus spinosa L. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods. 2019;9(1):5. [DOI:10.3390/foods9010005]
35. Gandhi GR, Jothi G, Antony PJ, Balakrishna K, Paulraj MG, Ignacimuthu S, et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. European journal of pharmacology. 2014;745:201-16. [DOI:10.1016/j.ejphar.2014.10.044]
36. Thakur S, Kaur A, Kaur A, Gill NS. THE INTERVENTION OF HERBAL DRUG IN NAFLD. 2024.