[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
.
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
برای نویسندگان::
آرشیو مجله و مقالات::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
IFRAME

..
:: دوره 19، شماره 3 - ( پاییز 1403 ) ::
جلد 19 شماره 3 صفحات 53-43 برگشت به فهرست نسخه ها
بررسی متغیرهای زمان، ترکیب حلال استخراجی و نسبت حلال به گیاه بر خواص آنتی‌اکسیدانی و ضد باکتریایی گیاه تشنه داری و برگ زیتون به کمک روش استخراج ریزموج و مافوق صوت
مهسا ابوالفتح ، نازنین چلویی ، معصومه عسگری ، احسان بلادیان ، وحید قاسم زاده محمدی*
استادیار گروه تغذیه و بهداشت مواد غذایی، دانشکده پزشکی، دانشگاه علوم پزشکی همدان، همدان ایران
چکیده:   (778 مشاهده)
سابقه و هدف: استفاده از روش‌های نوین عصاره‌گیری برای دستیابی بهینه به خواص عصاره‌های گیاهی بسیار قابل توجه ‌است. در این پژوهش خواص آنتی‌اکسیدانی و ضد میکروبی عصاره گیاه تشنه‌داری و برگ زیتون در دو روش استخراج با امواج ریزموج و فراصوت بر باکتری لیستریا مونوسیتوژنز بررسی شده ‌است.
مواد و روشها: پس از طراحی آزمایش‌ به روش Box-Behnken، استخراج ها با دستگاه‌های مایکروویو برای بررسی اثر ریزموج و حمام فراصوت برای بررسی اثر فراصوت انجام شد. محتوای فنلی و خواص آنتی‌اکسیدانی به ترتیب با استفاده از ترکیب فنلی کل یا TPC و 2،2-دی فنیل-1-پیکریل هیدرازیل (DPPH) تعیین شد. روش  میکرودایلوشن براث برای تعیین حداقل غلظت بازدارنده (MIC) بر روی باکتری لیستریا مونوسیتوژنز بکار گرفته شد.
یافتهها: مؤثرترین متغیر مستقل در استخراج در هر دو روش و در هر دو گیاه نسبت حلال به گیاه بود. نسبت اتانول در حلال استخراج کننده بر TPC و بازده تأثیرگذار بود. بیشترین میزان TPC برای برگ زیتون 26/0± 34/5 میلی­گرم بر گرم و برای تشنه‌داری 14/0± 89/2 میلی­گرم بر گرم با روش فراصوت به­دست آمد. همچنین بیشترین درصد بازداری رادیکال DPPH برای برگ زیتون 6/2 ± 13/52 درصد و برای تشنه‌داری 76/2± 24/55 درصد و با تابش ریزموج بود. کمترین میزان MIC برای عصاره برگ زیتون و به روش فراصوت بدست آمد (005/0 ± 47/0میلی‌گرم بر میلی‌لیتر).
نتیجه گیری: هر دو روش استخراج به دلایل تفاوت‌های ساختاری و ترکیبات موجود در دو گیاه، اثرگذاری متفاوتی بر خصوصیات عصاره داشته‌اند. بیشترین میزان ترکیبات فنولی هر دو گیاه را استخراج با امواج فراصوت و بیشترین میزان خواص آنتی‌اکسیدانی را استخراج به کمک تابش ریزموج‌ داشت. برگ زیتون و گیاه تشنه‌داری پتانسیل مناسبی برای کاهش آلودگی لیستریا مونوسیتوژنز از خود نشان دادند.
واژه‌های کلیدی: ریزموج، فراصوت، برگ زیتون، گیاه تشنه‌داری، لیستریا مونوسیتوژنز
متن کامل [PDF 779 kb]   (275 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: صنايع غذايي
دریافت: 1402/12/20 | پذیرش: 1403/3/16 | انتشار: 1403/7/11
  • نسبت حلال به گیاه موثر­ترین متغیر بر پاسخ ها در هر دو روش و هر دو گیاه بود.
  • روش ریز­موج و فرا­صوت عصاره ها با خصوصیات مختلف آنتی اگسیدانی و ضد میکروبی تولید کردند.
  • ظرفیت آنتی اکسیدانی به روش DPPH در هر دو روش کمتر از سایر پاسخ ها تحت تاثیر زمان استخراج بود.

فهرست منابع
1. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants. 2017;6(4):42. [DOI:10.3390/plants6040042]
2. Şahin S, Elhussein E, Bilgin M, Lorenzo JM, Barba FJ, Roohinejad S. Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. Journal of Food Processing and Preservation. 2018;42(5):e13604. [DOI:10.1111/jfpp.13604]
3. Alcántara C, Žugčić T, Abdelkebir R, García-Pérez JV, Jambrak AR, Lorenzo JM, et al. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules. 2020;25(7):(7):1718. [DOI:10.3390/molecules25071718]
4. Kerdar T, Moradkhani S, Dastan D. Phytochemical and Biological Studies of Scrophularia striata from Ilam. Jundishapur J Nat Pharm Prod. 2018;13(3):e62705. [DOI:10.5812/jjnpp.62705]
5. Li X, Liu Y, Jia Q, LaMacchia V, O'Donoghue K, Huang Z. A systems biology approach to investigate the antimicrobial activity of oleuropein. Journal of Industrial Microbiology and Biotechnology. 2016;43(12):1705-17. [DOI:10.1007/s10295-016-1841-8]
6. Dominciano LCdC, Oliveira CAFd, Lee S, Corassin C. Individual and combined antimicrobial activity of oleuropein and chemical sanitizers. J Food Chem Nanotechnol. 2016;2(3):124-7. [DOI:10.17756/jfcn.2016-020]
7. Omar SH, Kerr PG, Scott CJ, Hamlin AS, Obied HK. Olive (Olea europaea L.) Biophenols: A Nutriceutical against Oxidative Stress in SH-SY5Y Cells. Molecules. 2017;22(11):1858. [DOI:10.3390/molecules22111858]
8. Zargoosh Z, Ghavam M, Bacchetta G, Tavili A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports. 2019;9(1):16021. [DOI:10.1038/s41598-019-52605-8]
9. Shohrati M, Mahmoudi R, Nosratpour S, Pajohi-Alamoti M. Chemical composition and biological activities of Scrophularia striata extracts. Minerva Biotecnologica. 2014;26(3):183-9.
10. Giacometti J, Bursać Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International. 2018;113:245-62. [DOI:10.1016/j.foodres.2018.06.036]
11. Abubakar AR, Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioallied Sci. 2020;12(1):1-10. [DOI:10.4103/jpbs.JPBS_175_19]
12. Cruz RMS, Brito R, Smirniotis P, Nikolaidou Z, Vieira MC. Chapter 11 - Extraction of Bioactive Compounds From Olive Leaves Using Emerging Technologies. In: Grumezescu AM, Holban AM, editors. Ingredients Extraction by Physicochemical Methods in Food: Academic Press; 2017. p. 441-61. [DOI:10.1016/B978-0-12-811521-3.00011-9]
13. Swamy GJ, Muthukumarappan K. Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chemistry. 2017;220:108-14. [DOI:10.1016/j.foodchem.2016.09.197]
14. Alara OR, Abdurahman NH, Ali HA, Zain NM. Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: An optimization study and LC-QTOF-MS analysis. Future Foods. 2021;3:100035. [DOI:10.1016/j.fufo.2021.100035]
15. Esmaeelian M, Jahani M, Feizy J, Einafshar S. Effects of Ultrasound-Assisted and Direct Solvent Extraction Methods on the Antioxidant and Antibacterial Properties of Saffron (Crocus sativus L.) Corm Extract. Food Analytical Methods. 2021;14(1):74-87. [DOI:10.1007/s12161-020-01855-8]
16. Polanco-Lugo E, Martínez-Castillo JI, Cuevas-Bernardino JC, González-Flores T, Valdez-Ojeda R, Pacheco N, Ayora-Talavera T. Citrus pectin obtained by ultrasound-assisted extraction: Physicochemical, structural, rheological and functional properties. CyTA - Journal of Food. 2019;17(1):463-71. [DOI:10.1080/19476337.2019.1600036]
17. Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, Cravotto G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry. 2019;118:248-63. [DOI:10.1016/j.trac.2019.05.037]
18. He J-L, Guo H, Wei S-Y, Zhou J, Xiang P-Y, Liu L, et al. Effects of different extraction methods on the structural properties and bioactivities of polysaccharides extracted from Qingke (Tibetan hulless barley). Journal of Cereal Science. 2020;92:102906. [DOI:10.1016/j.jcs.2020.102906]
19. Sheehan B, Kocks C, Dramsi S, Gouin E, Klarsfeld AD, Mengaud J, Cossart P. Molecular and Genetic Determinants of the Listeria monocytogenes Infectious Process. In: Dangl JL, editor. Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms. Berlin, Heidelberg: Springer Berlin Heidelberg; 1994. p. 187-216. [DOI:10.1007/978-3-642-78624-2_9]
20. Costa NR, Lourenço J. Multiresponse problems: desirability and other optimization approaches. Journal of Chemometrics. 2016;30(12):702-14. [DOI:10.1002/cem.2848]
21. Abedi A-S, Rismanchi M, Shahdoostkhany M, Mohammadi A, Mortazavian AM. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. Journal of Food Science and Technology. 2017;54(12):3779-90. [DOI:10.1007/s13197-017-2718-1]
22. Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura-Carretero A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products. 2015;66:246-54. [DOI:10.1016/j.indcrop.2015.01.002]
23. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 2008;3(2):163-75. [DOI:10.1038/nprot.2007.521]
24. Sultana B, Anwar F, Ashraf M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules. 2009;14(6):2167-80. [DOI:10.3390/molecules14062167]
25. De Oliveira C, Rodrigues CdC. Extraction of oleuropein from olive leaves using a hydroalcoholic solvent. Brazilian Journal of Food Technology. 2017;20.
26. Šimat V, Skroza D, Tabanelli G, Čagalj M, Pasini F, Gómez-Caravaca AM, et al. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants. 2022;11(9):1656. [DOI:10.3390/antiox11091656]
27. Vural N, Algan Cavuldak Ö, Kenar A, Akay MA. Green alcoholic solvent and UAE extraction of oleuropein from the Olea europaea L.leaves: Experimental design, optimization, and comparison with Pharmacopoeia method. Separation Science and Technology. 2020;55(10):1813-28. [DOI:10.1080/01496395.2019.1606014]
28. Cifá D, Skrt M, Pittia P, Di Mattia C, Poklar Ulrih N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Science & Nutrition. 2018;6(4):1128-37. [DOI:10.1002/fsn3.654]
29. Guo L, Sun Q, Gong S, Bi X, Jiang W, Xue W, Fei P. Antimicrobial Activity and Action Approach of the Olive Oil Polyphenol Extract Against Listeria monocytogenes. Front Microbiol [Internet]. 2019 2019; 10:[1586 p.]. [DOI:10.3389/fmicb.2019.01586]
30. Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology. 2010;21(7):323-31. [DOI:10.1016/j.tifs.2010.04.003]
31. Mahboubi M, Kazempour N, Boland Nazar AR. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur journal of natural pharmaceutical products. 2013;8(1):15-9. [DOI:10.17795/jjnpp-7621]
32. da Rosa GS, Vanga SK, Gariepy Y, Raghavan V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies. 2019;58:102234. [DOI:10.1016/j.ifset.2019.102234]
33. Jiang H, Liu Z, Wang S. Microwave processing: Effects and impacts on food components. Critical Reviews in Food Science and Nutrition. 2018;58(14):2476-89. [DOI:10.1080/10408398.2017.1319322]
34. Martiny TR, Raghavan V, de Moraes CC, da Rosa GS, Dotto GL. Optimization of green extraction for the recovery of bioactive compounds from Brazilian olive crops and evaluation of its potential as a natural preservative. Journal of Environmental Chemical Engineering. 2021;9(2):105130. [DOI:10.1016/j.jece.2021.105130]
35. CoŞAnsu AkdemİR S, Kiymetlİ Ö. Antimicrobial activity of olive leaf extract on selected foodborne pathogens and its effect on thermal resistance of Listeria monocytogenes in sous vide ground beef. International Journal of Agriculture Environment and Food Sciences. 2021;5(2):236-42. [DOI:10.31015/jaefs.2021.2.14]
36. Şahin S, Samli R, Tan ASB, Barba FJ, Chemat F, Cravotto G, Lorenzo JM. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules. 2017;22(7):1056. [DOI:10.3390/molecules22071056]
37. Rodsamran P, Sothornvit R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience. 2019;28:66-73. [DOI:10.1016/j.fbio.2019.01.017]
38. Hannachi H, Benmoussa H, Saadaoui E, Saanoun I, Negri N, Elfalleh W. Optimization of ultrasound and microwaveassisted extraction of phenolic compounds from olive leaves by response surface methodology. Res. J Biotechnol. 2019;14:7-17.
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abolfath M, Cheloei N, Asgari M, Beladian E, Ghasemzadeh-mohammadi V. Investigating Variables of Time, Extraction Solvent Composition and Ratio of Solvent-to-plant on Antioxidant and Antibacterial Characteristics of Striata Plants and Olive Leaves Using Microwave and Ultrasonic Extraction Methods. Iranian J Nutr Sci Food Technol 2024; 19 (3) :43-53
URL: http://nsft.sbmu.ac.ir/article-1-3826-fa.html

ابوالفتح مهسا، چلویی نازنین، عسگری معصومه، بلادیان احسان، قاسم زاده محمدی وحید. بررسی متغیرهای زمان، ترکیب حلال استخراجی و نسبت حلال به گیاه بر خواص آنتی‌اکسیدانی و ضد باکتریایی گیاه تشنه داری و برگ زیتون به کمک روش استخراج ریزموج و مافوق صوت. علوم تغذیه و صنایع غذایی ایران. 1403; 19 (3) :43-53

URL: http://nsft.sbmu.ac.ir/article-1-3826-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 19، شماره 3 - ( پاییز 1403 ) برگشت به فهرست نسخه ها
Iranian Journal of  Nutrition Sciences and Food  Technology
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4710