گروه فیزولوژی ورزشی، دانشکده علوم ورزشی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران ، ft.taghian@gmail.com
چکیده: (117 مشاهده)
سابقه و هدف:سرطان روده بزرگ، سومین سرطان شایع در سطح جهان، با التهاب روده همراه است که منجر به پیش آگهی ضعیف میشود. هدف از مطالعه حاضر بررسی اسپاراسیس لاتیفولیا و تمرینات هوازی بر فعالیتهای ضد التهابی و تنظیم فاکتورهای التهابی در موشهای مبتلا به سرطان روده بزرگ و شیمی درمانی شده میباشد. مواد و روشها:36 سر موش C57BL/6 6-7 هفتهای به شش گروه تقسیم شدند: گروه کنترل، موشهای مبتلا به سرطان روده بزرگ، موشهای مبتلا به سرطان روده بزرگ تحت درمان با شیمیدرمانی توسط داروی فلوروئوراسیل، 150 میلی گرم بر کیلوگرم وزن بدن)، گروه سرطان+شیمی درمانی+مکمل، گروه سرطان+شیمی درمانی+تمرین، گروه سرطان+شیمی درمانی+مکمل+تمرین. ژنهای بدست آمده از تجزیه و تحلیل بیوانفورماتیکی شامل SPP1/COL1A1/IL10/IL11/IL12a بوده است. برای بررسی بیان ژنها روش واکنش زنجیرهای پلیمراز کمی (qRT-PCR) استفاده شد. یافتهها:در گروه سرطان روده بزرگ نسبت به گروه کنترل بیان ژنهایSPP1/COL1A1/ IL11/IL12aافزایش و بیان IL10کاهش یافت (001/0>p). انجام تمرینات هوازی با شدت متوسط و مصرف ترکیبات زیست فعال اسپاراسیس لاتیفولیا بطور قابل توجهی سطح بیان SPP1/COL1A1/ IL11/IL12a را کاهش داد (001/0>p). انجام تمرینات هوازی و مصرف ترکیبات زیست فعال اسپاراسیس لاتیفولیا سطح بیان IL10 را افزایش داد (001/0>p). نتیجه گیری:تمرینات هوازی با شدت متوسط و مصرفترکیبات زیست فعال اسپاراسیس لاتیفولیا میتواند شبکه SPP1/COL1A1/IL10/IL11/IL12a را در بافت روده بزرگ تنظیم کند.
نوع مقاله: پژوهشي |
موضوع مقاله: تغذيه دریافت: 1403/2/17 | پذیرش: 1403/4/27 | انتشار: 1403/10/16
پیامهای اصلی
مصرف عصاره اسپاراسیس لاتیفولیا و تمرین هوازی سبب بهبود مسیرهای التهابی در موشهای مبتلا به سرطان روده بزرگ میگردد.
اسپاراسیس لاتیفولیا و تمرین هوازی سبب کاهش عوارض جانبی شیمی درمانی میگردد.
اسپاراسیس لاتیفولیا و تمرین هوازی میتواند به عنوان یک استراتژی در طب مکمل معرفی گردد.
فهرست منابع
1. Jayaraman P, Rodrik-Outmezguine V, Millholland J, O'Brien N, Wong C, Diwanji R, et al. Targeting tumor-promoting inflammation (TPI) via the IL-1βpathway for cancer immunotherapy. Cancer Research. 2020;80(16_Supplement):5640-. [DOI:10.1158/1538-7445.AM2020-5640]
2. Ma L, Qin C, Wang M, Gan D, Cao L, Ye H, et al. Preparation, preliminary characterization and inhibitory effect on human colon cancer HT-29 cells of an acidic polysaccharide fraction from Stachys floridana Schuttl. ex Benth. Food and chemical toxicology. 2013;60:269-76. [DOI:10.1016/j.fct.2013.07.060]
3. Pawlowska AM, Camangi F, Bader A, Braca A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chemistry. 2009;112(4):858-62. [DOI:10.1016/j.foodchem.2008.06.053]
4. Shiga T, Hiraide M. Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Current treatment options in oncology. 2020;21:1-21. [DOI:10.1007/s11864-020-0719-1]
5. Qi F, Pradhan RK, Dash RK, Beard DA. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase. BMC biochemistry. 2011;12:1-15. [DOI:10.1186/1471-2091-12-53]
6. Arafah A, Rehman M, Ahmad A, AlKharfy K, Alqahtani S, Jan B, et al. Myricetin (3, 3′, 4′, 5, 5′, 7-hexahydroxyflavone) prevents 5-fluorouracilinduced cardiotoxicity. ACS Omega 7: 4514-4524. 2022. [DOI:10.1021/acsomega.1c06475]
7. Atiq A, Shal B, Naveed M, Khan A, Ali J, Zeeshan S, et al. Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. European journal of pharmacology. 2019;843:292-306. [DOI:10.1016/j.ejphar.2018.12.014]
8. Mager LF, Wasmer M-H, Rau TT, Krebs P. Cytokine-induced modulation of colorectal cancer. Frontiers in oncology. 2016;6:96. [DOI:10.3389/fonc.2016.00096]
9. Li M, Wang J, Wang C, Xia L, Xu J, Xie X, et al. Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Experimental Cell Research. 2020;394(1):112153. [DOI:10.1016/j.yexcr.2020.112153]
10. Kaviani E, Hajibabaie F, Abedpoor N, Safavi K, Ahmadi Z, Karimy A. System biology analysis to develop diagnostic biomarkers, monitoring pathological indexes, and novel therapeutic approaches for immune targeting based on maggot bioactive compounds and polyphenolic cocktails in mice with gastric cancer. Environmental Research. 2023;238:117168. [DOI:10.1016/j.envres.2023.117168]
11. Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomedicine & Pharmacotherapy. 2017;91:1167-77. [DOI:10.1016/j.biopha.2017.05.056]
12. Xie Z, Zheng G, Niu L, Du K, Li R, Dan H, et al. SPP1+ macrophages in colorectal cancer: Markers of malignancy and promising therapeutic targets. Genes & Diseases. 2024:101340. [DOI:10.1016/j.gendis.2024.101340]
13. Braumüller H, Mauerer B, Andris J, Berlin C, Wieder T, Kesselring R. The cytokine network in colorectal cancer: Implications for new treatment strategies. Cells. 2022;12(1):138. [DOI:10.3390/cells12010138]
14. Chen X-X, Lam KK-H, Feng Y-B, Xu K, Sze SC-W, Tang SC-W, et al. Ellagitannins from pomegranate ameliorates 5-fluorouracil-induced intestinal mucositis in rats while enhancing its chemotoxicity against HT-29 colorectal cancer cells through intrinsic apoptosis induction. Journal of agricultural and food chemistry. 2018;66(27):7054-64. [DOI:10.1021/acs.jafc.8b02458]
15. Chen Y, Nie Y-c, Luo Y-l, Lin F, Zheng Y-f, Cheng G-h, et al. Protective effects of naringin against paraquat-induced acute lung injury and pulmonary fibrosis in mice. Food and Chemical Toxicology. 2013;58:133-40. [DOI:10.1016/j.fct.2013.04.024]
16. Huang X, Nie S, Xie M. Interaction between gut immunity and polysaccharides. Critical reviews in food science and nutrition. 2017;57(14):2943-55. [DOI:10.1080/10408398.2015.1079165]
17. Hida TH, Kawaminami H, Ishibashi K-i, Miura NN, Adachi Y, Ohno N. Oral administration of soluble β-glucan preparation from the cauliflower mushroom, Sparassis crispa (higher basidiomycetes) modulated cytokine production in mice. International journal of medicinal mushrooms. 2013;15(6). [DOI:10.1615/IntJMedMushr.v15.i6.20]
18. Uchida M, Horii N, Hasegawa N, Oyanagi E, Yano H, Iemitsu M. Sparassis crispa intake improves the reduced lipopolysaccharide-induced TNF-α production that occurs upon exhaustive exercise in mice. Nutrients. 2019;11(9):2049. [DOI:10.3390/nu11092049]
19. Wei X, Cheng F, Liu J, Cheng Y, Yun S, Meng J, et al. Sparassis latifolia polysaccharides inhibit colon cancer in mice by modulating gut microbiota and metabolism. International Journal of Biological Macromolecules. 2023;232:123299. [DOI:10.1016/j.ijbiomac.2023.123299]
20. Wang T, Zhang Y, Taaffe DR, Kim J-S, Luo H, Yang L, et al. Protective effects of physical activity in colon cancer and underlying mechanisms: A review of epidemiological and biological evidence. Critical Reviews in Oncology/Hematology. 2022;170:103578. [DOI:10.1016/j.critrevonc.2022.103578]
21. Brown JC, Ma C, Shi Q, Fuchs CS, Meyer J, Niedzwiecki D, et al. Physical activity in stage III colon cancer: CALGB/SWOG 80702 (Alliance). Journal of Clinical Oncology. 2023;41(2):243-54. [DOI:10.1200/JCO.22.00171]
22. Brown JC, Ma C, Shi Q, Niedzwiecki D, Zemla T, Couture F, et al. Association between physical activity and the time course of cancer recurrence in stage III colon cancer. British journal of sports medicine. 2023;57(15):965-71. [DOI:10.1136/bjsports-2022-106445]
23. Greenberg AL, Tolstykh IV, Van Loon K, Laffan A, Stanfield D, Steiding P, et al. Association between adherence to the American Cancer Society Nutrition and Physical Activity Guidelines and stool frequency among colon cancer survivors: a cohort study. Journal of Cancer Survivorship. 2023;17(3):836-47. [DOI:10.1007/s11764-022-01288-8]
24. Li C, Lau HC-H, Zhang X, Yu J. Mouse models for application in colorectal cancer: understanding the pathogenesis and relevance to the human condition. Biomedicines. 2022;10(7):1710. [DOI:10.3390/biomedicines10071710]
25. Gui Y, Famurewa AC, Olatunji OJ. Naringin ameliorates 5-fluorouracil induced cardiotoxicity: An insight into its modulatory impact on oxidative stress, inflammatory and apoptotic parameters. Tissue and Cell. 2023;81:102035. [DOI:10.1016/j.tice.2023.102035]
26. Liu J, Zhang X, Zhang J, Yan M, Li D, Zhou S, et al. Research on extraction, structure characterization and immunostimulatory activity of cell wall polysaccharides from Sparassis latifolia. Polymers. 2022;14(3):549. [DOI:10.3390/polym14030549]
27. Dufresne S, Guéritat J, Chiavassa S, Noblet C, Assi M, Rioux‐Leclercq N, et al. Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. The FASEB journal. 2020;34(4):4984-96. [DOI:10.1096/fj.201901728R]
28. Mehl KA, Davis JM, Clements JM, Berger FG, Pena MM, Carson JA. Decreased intestinal polyp multiplicity is related to exercise mode and gender in Apc Min/+ mice. Journal of applied physiology. 2005;98(6):2219-25. [DOI:10.1152/japplphysiol.00975.2004]
29. Frajacomo FT, Kannen V, Deminice R, Geraldino TH, Pereira-da-Silva G, Uyemura SA, et al. Aerobic training activates interleukin 10 for colon anticarcinogenic effects. Med Sci Sports Exerc. 2015;47(9):1806-13. [DOI:10.1249/MSS.0000000000000623]
30. Mahmood S, English DR, MacInnis RJ, Karahalios A, Owen N, Milne RL, et al. Domain-specific physical activity and the risk of colorectal cancer: results from the Melbourne Collaborative Cohort Study. BMC cancer. 2018;18(1):1-9. [DOI:10.1186/s12885-018-4961-x]
31. Friedenreich CM, Neilson HK, Farris MS, Courneya KS. Physical activity and cancer outcomes: a precision medicine approach. Clinical Cancer Research. 2016;22(19):4766-75. [DOI:10.1158/1078-0432.CCR-16-0067]
32. Hanyuda A, Kim SA, Martinez-Fernandez A, Qian ZR, Yamauchi M, Nishihara R, et al. Survival benefit of exercise differs by tumor IRS1 expression status in colorectal cancer. Annals of surgical oncology. 2016;23:908-17. [DOI:10.1245/s10434-015-4967-4]
33. Matsubara E, Yano H, Pan C, Komohara Y, Fujiwara Y, Zhao S, et al. The significance of SPP1 in lung cancers and its impact as a marker for protumor tumor-associated macrophages. Cancers. 2023;15(8):2250. [DOI:10.3390/cancers15082250]
34. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences. 2008;105(6):2117-22. [DOI:10.1073/pnas.0712038105]
35. Nowacka-Jechalke N, Nowak R, Lemieszek MK, Rzeski W, Gawlik-Dziki U, Szpakowska N, et al. Promising potential of crude polysaccharides from Sparassis crispa against colon cancer: An in vitro study. Nutrients. 2021;13(1):161. [DOI:10.3390/nu13010161]
36. Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5(2):35-46. [DOI:10.1016/j.phanu.2017.02.001]
37. Hao Z-q, Chen Z-j, Chang M-c, Meng J-l, Liu J-y, Feng C-p. Rheological properties and gel characteristics of polysaccharides from fruit-bodies of Sparassis crispa. International Journal of Food Properties. 2018;21(1):2283-95. [DOI:10.1080/10942912.2018.1510838]
38. Wei X, Cheng F, Liu J, Cheng Y, Yun S, Meng J, et al. Sparassis latifolia polysaccharides inhibit colon cancer in mice by modulating gut microbiota and metabolism. International Journal of Biological Macromolecules. 2023:123299. [DOI:10.1016/j.ijbiomac.2023.123299]
Abedpoor N, Taghian F, Jalali Dehkordi K, Safavi K. The role of Sparasis Latifolia and Aerobic Exercise on Anti-inflammatory Activities and Regulation of Inflammatory Factors in the Intestine of Mice with Colon Cancer Under Chemotherapy. Iranian J Nutr Sci Food Technol 2025; 19 (4) :13-24 URL: http://nsft.sbmu.ac.ir/article-1-3854-fa.html
عابدپور نوید، تقیان فرزانه، جلالی دهکردی خسرو، صفوی کامران. نقش اسپاراسیس لاتیفولیا و تمرینات هوازی بر فعالیتهای ضد التهابی و تنظیم فاکتورهای التهابی در روده موشهای مبتلا به سرطان روده بزرگ تحت شیمی درمانی. علوم تغذیه و صنایع غذایی ایران. 1403; 19 (4) :13-24